Determination of Radial Dispersion Coefficient in Beds of Sand from Measurements of the Rate of Dissolution of Buried Cylinders Aligned with the Flow

Article Preview

Abstract:

A method is presented for determining the coefficient of transverse dispersion in flow through packed beds, which is based on the measurement of the rate of dissolution of planar or cylindrical surfaces, buried in the bed and aligned with the flow direction. The underlying theory is initially explained and experiments are then described in which more than three hundred new data points were obtained. These data are for the flow of water, at interstitial velocities between 0.1 and 1.5 mm/s, through beds of silica sand with average particle sizes between 0.219 and 0.496 mm. The experiments were performed at a range of temperatures, between 20oC and 35oC, and this yielded dispersion data for values of the Schmidt number (Sc=μ /ρDm) between 1170 and 570. For all the data reported, the ratio between the coefficient of transverse dispersion and the coefficient of molecular diffusion was shown to correlate well with the Reynolds number (Re=udρ /μ), both for beds with narrow and with wide particle size distributions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-37

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Baumeister, E., Klose, U., Albert, K., Bayer, E., Determination of the Apparent Transverse and Axial Dispersion Coefficients in a Chromatographic Column by Pulsed Field Gradient Nuclear Magnetic Resonance, Journal of Chromatography A, 694, 321-331, (1995).

DOI: 10.1016/0021-9673(94)01062-j

Google Scholar

[2] Bear, J., Dynamics of Fluids in Porous Media, pp.579-663 (in the Dover edition), Elsevier, (1972).

Google Scholar

[3] Bernard, R. A. and Wilhelm, R. H., Turbulent Diffusion in Fixed Beds of Packed Solids, Chem Eng Progr, 46, 233-244, (1950).

Google Scholar

[4] Bischoff, K. B., A Note on Gas Dispersion in Packed Beds, Chem Eng Sci, 24, 607, (1969).

Google Scholar

[5] Blackwell, R. J., Laboratory studies of microscopic dispersion phenomena, Soc Petrol Engrs J, 225, Part 2, 1-8, (1962).

Google Scholar

[6] Burmester, S. S. H., Coelho, M. A. N. and Guedes de Carvalho, J. R. F., Transverse Dispersion in Granular Beds: Part IV – Mass Transfer Around an Active Cylinder with the Axis Perpendicular to the Flow Direction in Packed Beds, Trans I Chem E, 68, Part. A, 510–515, (1990).

Google Scholar

[7] Carberry, J. J., Chemical and Catalytic Reaction Engineering, McGraw-Hill Chemical Engineering Series, (1976).

Google Scholar

[8] Carslaw, H. S., Jaeger, J. C., Conduction of Heat in Solids, pp.334-336, Second edition, Oxford University Press, (1959).

Google Scholar

[9] Coelho, M. A. N. and Guedes de Carvalho, J. R. F., Transverse Dispersion in Granular Beds: Part I – Mass Transfer from a Wall and the Dispersion Coefficient in Packed Beds, Chem Eng Res Des, 66, 165–177, 1988a.

Google Scholar

[10] Coelho, M. A. N. and Guedes de Carvalho, J. R. F., Transverse Dispersion in Granular Beds: Part II – Mass Transfer from Large Spheres Immersed in Fixed or Fluidised Beds of Small Inert Particles, Chem Eng Res Des, 66, 178–189, 1988b.

Google Scholar

[11] Dunker, C., Benzoic Acid, in Kirk-Othmer Encyclopedia of Chemical Technology, vol. 3, p.422, Second edition, Interscience Publishers, (1964).

Google Scholar

[12] Eisenberg, M., Chang, P., Tobias, C. W., Wilke, C. R., Physical Properties of Organic Acids, AIChE Journal, 1, 558, (1955).

DOI: 10.1002/aic.690010429

Google Scholar

[13] Ghosh, U. K., Kumar, S. and Upadhyay, S. N., Diffusion coefficient in aqueous polymer solutions, J. Chem Eng Data, 36, 413-417, (1991).

DOI: 10.1021/je00004a020

Google Scholar

[14] Gibbs, S. J., Lightfoot, E. N. and Root, T. W., Protein Diffusion in Porous Gel Filtration Chromatography Media Studied by Pulsed Field Gradient NMR Spectroscopy, J. Phys. Chem., 96, 7458-7462, (1992).

DOI: 10.1021/j100197a060

Google Scholar

[15] Grane, F. E. and Gardner, G. H. F., Measurements of transverse dispersion in granular media, J Chem Eng Data, 6(2), 283-287, (1961).

DOI: 10.1021/je60010a031

Google Scholar

[16] Guedes de Carvalho, J. R. F., Pinto, A. M. F. R., Pinho, C. M. C. T., Mass Transfer Around Carbon Particles in Fluidised Beds, Trans I Chem E, 69, Part. A, 63–70, (1991).

Google Scholar

[17] Gunn, D. J., Mixing in Packed and Fluidised Beds, Chem Engr., London, CE 153-172, (1968).

Google Scholar

[18] Gunn, D. J., Theory of Axial and Radial Dispersion in Packed Beds, Trans I Chem E, 47, T351-T359, (1969).

Google Scholar

[19] Harleman, D. R. F. and Rumer, R., Longitudinal and lateral dispersion in an isotropic porous medium, J Fluid Mech, 16, 1-12, (1963).

DOI: 10.1017/s0022112063000847

Google Scholar

[20] Hartman, M. E., Wevers, C. J. H. and Kramers, H., Lateral diffusion with liquid flow through a packed bed of ion-exchange particles, 80-82, (1958).

DOI: 10.1016/0009-2509(58)87012-8

Google Scholar

[21] Hiby, J. W., Longitudinal and Transverse Mixing during Single-Phase Flow through Granular Beds, Interaction Between Fluids & Particles (London: I Chem E. ), pp.312-325, (1962).

Google Scholar

[22] Hoopes, J. A. and Harleman, D. R. F., Waste water recharge and dispersion in porous media, M.I.T. Hydrodynamics Lab Rept 75, 55-60, (1965).

Google Scholar

[23] Kumar, S., Upadhyay, S. N and Mathur, V. K,. J. Chem Eng Data, 23, 139, (1978).

Google Scholar

[24] Kuriloff, B. Z., Physik Chem, 24, 441, 1897.

Google Scholar

[25] Kuster, F. W., Physik Chem, 17, 357, 1895.

Google Scholar

[26] List, E. J., The stability and mixing of a density-stratified horizontal flow in a saturated porous medium, W M Keck Lab Hydraulics and Water Resources Rept KH-R-11, (1965).

Google Scholar

[27] Lozar, J., Laguerie, C., Couderc, J. P., Diffusivité de l'Acide Benzoique dans l'Eau: Influence de la Temperature, The Canadian Journal of Chemical Engineering, 53, 200–203, (1975).

DOI: 10.1002/cjce.5450530208

Google Scholar

[28] McCune, L. K. and Wilhelm, R. H., Mass and momentum transfer in solid-liquid system, Ind Eng Chem, 41 (6), 1124-1134, (1949).

DOI: 10.1021/ie50474a006

Google Scholar

[29] Moyle, M. P. an Tyner, M., Solubility and diffusivity of 2-naphtol in water, Ind Eng Chem, 45 (8), 1794-1797, (1953).

DOI: 10.1021/ie50524a051

Google Scholar

[30] Sahay, H., Kumar, S., Upadhyay, S. N., Upadhyay, Y., Solubility of Benzoic Acid in Aqueous Polymeric Solutions", J Chem Eng Data, 26, 181–183, (1981).

DOI: 10.1021/je00024a027

Google Scholar

[31] Satterfield, C. N., Mass Transfer in Heterogeneous Catalysis, p.33, MIT Press, (1970).

Google Scholar

[32] Scheidegger, A. E., The Physics of Flow Through Porous Media, 3rd edition, University of Toronto Press, (1974).

Google Scholar

[33] Seidell, A., Solubilities of organic compounds, 3º ed., New York, D. Van Nostrand Co., (1941).

Google Scholar

[34] Slichter, C. S., Field Measurement of the Rate of Movement of Underground Waters, U.S. Geol. Survey, Water Supply Paper, 140, (1905).

Google Scholar

[35] Steele, L. R. and Geankoplis, C. J., Mass transfer from a solid sphere to water in highly turbulent flow, A.I. Ch.E. Journal, 5, 178-181, (1959).

DOI: 10.1002/aic.690050212

Google Scholar

[36] Vanadurongwan, V., Laguerie, C., Couderc, J. P., Diffusivité Moienne de l'Acide Benzoique dans l'Eau entre la Dilution Infinie et la Saturation – Influence de la Temperature, The Canadian Journal of Chemical Engineering, 54, 460–463, (1976).

DOI: 10.1002/cjce.5450540517

Google Scholar

[37] Wen, C. Y., Fan, L. T., Models for Systems and Chemical Reactors, Marcel Dekker, (1975).

Google Scholar

[38] Wilhelm, R. H., Progress Towards the A Priori Design of Chemical Reactors, Pure Appl Chem, 5, 403-421, (1962).

Google Scholar

[39] Wilke, C. R., Chem Eng Progr, 45, 218, (1949).

Google Scholar

[40] Wilke, C. R. and Chang, P., Correlation of diffusion coefficients in dilute solutions, AIChE Journal, 1 (2), 264-270, (1955).

DOI: 10.1002/aic.690010222

Google Scholar