The Entry of Ions into a Molecular Synthetic Channel in a Membrane

Article Preview

Abstract:

A molecular dynamics simulation is conducted to describe the behaviour of sodium and chloride ions as they enter a synthetic ion channel (mounted in a bilayer membrane) from aqueous NaCl solutions on either side of the membrane. The channel consists of an α-helical peptide chain scaffold with six aligned crown ether (CE) rings (18-CE-6) as side groups, forming a molecular chamber between each neighbouring pair. Responding to the channel’s axial −2 to −1 V electric potential, the Na+ ions, but not Cl, enter the channel spontaneously but they do not proceed beyond the first chamber formed between CE rings 1 and 2. The application of an axial electric field promotes the entry of a Na+ ion and its migration over the internal length of the channel. The forces that drive the migration phenomena are predominantly coulombic. Although the same electric field simultaneously allows a Cl ion initially to access the channel the ion is subsequently expelled from the first chamber into the bilayer. Although a Na+ ion may make a facile or even spontaneous entry to the channel it requires an energy estimated from Coulomb forces as ~5 eV to pass subsequent CE rings, and considerably more to exit the channel. An important role is found for the vibrational activity of the ether rings’ C-O-C units in their facilitating contribution to the migration of Na+ in the channel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-135

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.G. Hammes, Physical chemistry for the biological sciences, Wiley-Interscience, Hoboken, New Jersey 2007, Chapter 3.

Google Scholar

[2] J. -C. Olsen, K. E. Griffiths, J. F. Stoddart, A Short History of the Mechanical Bond, in From Non-Covalent Assemblies to Molecular Machines, J. -P. Sauvage, P. Gaspard (Eds. ), Wiley-VCH: Weinheim, Germany (2011), pp.67-139.

DOI: 10.1002/9783527632817.ch8

Google Scholar

[3] D.A. Morton-Blake, Molecular dynamics of the transport of ions in a synthetic channel, Diffusion Fundamentals 1 (2014) 77-95.

Google Scholar

[4] D.A. Morton-Blake, Conan Kumari-Doyle, The motion of an ion in a synthetic molecular ion channel, Computational and Theoretical Chemistry 1008 (2013).

DOI: 10.1016/j.comptc.2012.12.007

Google Scholar

[5] N. Sakai, S. Matile, Synthetic ion channels, Langmuir 29 (2013).

Google Scholar

[6] V.E. Carmichel, P. Dutton, T. Fyles, T. James, J. Swan, M. Zojaji, Biomimetic ion transport: A functional model of a unimolecular ion channel, J. Amer. Chem. Soc. 111 (1989) 767-769.

DOI: 10.1021/ja00184a075

Google Scholar

[7] N. Voyer, M. Robitaille, A novel functional artificial channel, J. Am. Chem. Soc. 117 (1995) 6599-6600.

DOI: 10.1021/ja00129a027

Google Scholar

[8] W. Kabsch, C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers. 22 (1983) 2577-2637.

DOI: 10.1002/bip.360221211

Google Scholar

[9] W. Smith, T.R. Forester, DL_POLY_2. 0: a general-purpose parallel molecular dynamics simulation package, J. Molec. Graphics 14 (1996) 136.

DOI: 10.1016/s0263-7855(96)00043-4

Google Scholar

[10] Gaussian 03, Revision E. 01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT, (2004).

Google Scholar

[11] J. Åqvist, Ion-water interaction potentials derived from free energy perturbation simulations, J. Phys. Chem. 94 (1990) 8021-8024.

DOI: 10.1021/j100384a009

Google Scholar

[12] S.H. Lee, J.C. Rasaiah, Molecular dynamics simulation of ion mobility. 2. Alkali metal halide ions using the SPC/E model for water at 25°C, J. Chem. Phys. 100 (1996) 1420-1425.

DOI: 10.1021/jp953050c

Google Scholar

[13] S. L. Mayo, B. D. Olafson, W.A. Goddard III, DREIDING: A generic force field for molecular simulations, J. Phys. Chem. 94 (1990) 8897-8909.

DOI: 10.1021/j100389a010

Google Scholar

[14] H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91 (1987) 6269-6271.

DOI: 10.1021/j100308a038

Google Scholar

[15] W.T. Coffey, Yu.P. Kalmykov, J.T. Waldron, The Langevin Equation: with Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, second edition, World Scientific Singapore, 2004, Chapter 1.

DOI: 10.1142/5343

Google Scholar

[16] A.R. Tiller, Dielectric relaxation in polymers by molecular dynamics simulation, Macromolecules 25 (1992) 4605-4611.

DOI: 10.1021/ma00044a022

Google Scholar

[17] E. Samson, J. Marchand K.A. Snyder, Calculation of ionic diffusion coefficients on the basis of migration test results, Materials and Structures 36 (2003) 156-165.

DOI: 10.1007/bf02479554

Google Scholar

[18] P. Atkins, J. de Paula, Physical Chemistry, eighth edition, Oxford University Press, Oxford 2006 , Chapter 21.

Google Scholar

[19] A. Faracone, L. Liu, C. -Y. Mou, P.C. Shih, J.R.D. Copley, S.H. Chen, Translational and rotational dynamics of water in mesoporous silica materials, J. Chem. Phys. 119 (2003) 3963-3971.

DOI: 10.1063/1.1584653

Google Scholar

[20] R. A. Fouracre, M. J. Given, B. H. Crichton, The effect of alternating fields on ion migration in solid dielectrics, J. Phys. C: Solid State Phys. 19 (1986) 1949-(1958).

DOI: 10.1088/0022-3719/19/12/009

Google Scholar

[21] L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance, Rev. Mod. Phys. 70 (1998) 224-287.

DOI: 10.1103/revmodphys.70.223

Google Scholar