An Overview on Surface Hardening of Titanium Alloys by Diffusion of Interstitial Atoms

Article Preview

Abstract:

In this paper, diffusional surface hardening processes utilized to overcome the poor tribological performance of titanium and its alloys is briefly introduced. More specifically, surface treatments known as thermal oxidation, nitriding and boriding offering the advantage of producing graded surfaces comprising hard compound layer and diffusion zone by diffusion of interstitial atoms (oxygen, nitrogen and boron) are overviewed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-116

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Boyer, G. Welsch, E.W. Collings, Materials properties handbook: Titanium alloys, ASM International, Ohio, (1994).

Google Scholar

[2] M.J. Donachie, Titanium: A Technical Guide, ASM International, Ohio, (1989).

Google Scholar

[3] M.A. Imam, A.C. Fraker, Titanium alloys as implant materials, in: S.A. Brown, J.E. Lemons, (Eds. ), Medical applications of titanium and its alloys, ASTM, Philadelphia, 1996, pp.3-15.

DOI: 10.1520/stp16066s

Google Scholar

[4] D.M. Brunette, B. Tengwall, M. Textor, P. Thomsen, Titanium in Medicine, Springer Verlag, Heidelberg, (2001).

Google Scholar

[5] M. Long, H.J. Rack, Titanium alloys in total joint replacement-a materials science perspective, Biomaterials 19 (1998) 1621-1639.

DOI: 10.1016/s0142-9612(97)00146-4

Google Scholar

[6] H. Dong, T. Bell, Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment, Wear 238 (2000) 131-137.

DOI: 10.1016/s0043-1648(99)00359-2

Google Scholar

[7] C. Boettcher, T. Bell, H. Dong, Surface engineering of Timet 550 with oxygen to form a rutile-based wear resistant coating, Metall. Mater. Trans. A 33 (2002) 1201-1211.

DOI: 10.1007/s11661-002-0221-3

Google Scholar

[8] P. -Y. Qi, X.Y. Li, H. Dong, T. Bell, Characterization of the palladium-modified thermal oxidation-treated titanium, Mat. Sci. Eng. A Sruct. 326 (2002) 330-342.

DOI: 10.1016/s0921-5093(01)01701-4

Google Scholar

[9] D.H. Buckley, K. Miyoshi, Friction and wear of ceramics, Wear 100 (1984) 333–353.

DOI: 10.1016/0043-1648(84)90020-6

Google Scholar

[10] D.H. Buckley, Surface effects in adhesion, friction, wear, and lubrication, Elsevier, Amsterdam, (1981).

Google Scholar

[11] B. Bhushan, Principles and applications of tribology, John Wiley and Sons, New York, (2013).

Google Scholar

[12] Leyens, C., Peters, M., (2003). Titanium and titanium Alloys: Fundamentals and applications, Wiley-VCH, Weinheim.

Google Scholar

[13] E. Rabinowicz, Lubricants for titanium, Met. Prog. 67 1(955 112-114.

Google Scholar

[14] A. Shapiro, H. Gisser, Lubrication of titanium surfaces modified by metallic diffusion, ASLE Trans. 6 (1963) 40-48.

DOI: 10.1080/05698196308971997

Google Scholar

[15] G.W. Stachowiak, A.W. Bachelor, Engineering Tribology, Butterworth Heinemann, Boston, (2001).

Google Scholar

[16] P.A. Dearnley, A brief review of test methodologies for surface-engineered biomedical implant alloys, Surf. Coat. Tech. 198 2005 483– 490.

DOI: 10.1016/j.surfcoat.2004.10.067

Google Scholar

[17] Information on http: /www. webelements. com.

Google Scholar

[18] Alloy phase diagrams, ASM Handbook Volume 3, ASM international, Ohio, (1992).

Google Scholar

[19] F.M. Guclu, H. Cimenoglu, E.S. Kayali, The recrystallization and thermal oxidation behavior of cp-titanium, Mat. Sci. Eng. C 56 (2006) 367-1372.

Google Scholar

[20] H. Guleryuz, H. Cimenoglu, Effect of thermal oxidation on corrosion and corrosion–wear behaviour of a Ti–6Al–4V alloy, Biomaterials 25 (2004) 3325–3333.

DOI: 10.1016/j.biomaterials.2003.10.009

Google Scholar

[21] H. Guleryuz, H. Cimenoglu, Surface modification of a Ti–6Al–4V alloy by thermal oxidation, Surf. Coat. Tech. 192 (2005) 164-170.

DOI: 10.1016/j.surfcoat.2004.05.018

Google Scholar

[22] M.D. Unlu, O. Meydanoglu, H. Cimenoglu Air Oxidation Behaviour of a Ti-6Al-7Nb Alloy, Defect. Diffus. Forum 297-301 (2010) 1389-1394.

DOI: 10.4028/www.scientific.net/ddf.297-301.1389

Google Scholar

[23] H. Cimenoglu, O. Meydanoglu, M. Baydogan, H. Bermek, P. Huner, E.S. Kayali, Characterization of thermally oxidized Ti6Al7Nb alloy for biological applications, Met. Mater. Int. 17 (2011) 765-770.

DOI: 10.1007/s12540-011-1011-5

Google Scholar

[24] M. Cingi, O. Meydanoglu, H. Güleryüz, M. Baydogan, H. Çimenoğlu, E.S. Kayali, [High cycle fatigue behavior of thermally oxidized Ti6Al4V alloy, Mater. Sci. Forum 561-565 (2007) 2179-2182.

DOI: 10.4028/www.scientific.net/msf.561-565.2179

Google Scholar

[25] P.A. Dearnley, K.L. Dahm, H. Cimenoglu, The corrosion–wear behaviour of thermally oxidised Cp–Ti and Ti–6Al–4V, Wear 256 (2004) 469-479.

DOI: 10.1016/s0043-1648(03)00557-x

Google Scholar

[26] H. Guleryuz, H. Cimenoglu, F. Muhaffel, Oxidized titanium, in: MateriJals for joint arthroplasty - biotribology of potential bearings, R. Sonntag, J.P. Kretzer (Eds. ), Imperial College Press, in press.

DOI: 10.1142/9781783267170_0012

Google Scholar

[27] S. Weissman, A. Shrier, Strain distribution in oxidized alpha titanium crystals, in: R.I. Jaffee, N.E. Promisel (Eds. ), The science, technology and application of titanium, Pergamon Press, London, 1968, pp: 441-458.

DOI: 10.1016/b978-0-08-006564-9.50054-3

Google Scholar

[28] H. Dong, X.Y. Li, Oxygen boost diffusion for the deep-case hardening of titanium alloys, Mater. Sci. Eng. A Sruct. 280 (2000) 303-310.

DOI: 10.1016/s0921-5093(99)00697-8

Google Scholar

[29] P. Kofstad, High Temperature Corrosion, Elsevier Applied Science, Essex, (1988).

Google Scholar

[30] H. Guleryuz, Surface modification of Ti6Al4V alloy by thermal oxidation, MSc thesis, Istanbul Technical University, (2003).

Google Scholar

[31] H. Guleryuz, H. Cimenoglu, Oxidation of Ti–6Al–4V alloy, J. Alloy. Compd. 472 (2009) 241–246.

DOI: 10.1016/j.jallcom.2008.04.024

Google Scholar

[32] G.G. Maksimovich, I.N. Pogrelyuk, V.N. Fedirko, Structure formation in nitrided layers of titanium alloys, Met. Sci. Heat. Treat. 28 (1986) 393-397.

DOI: 10.1007/bf00836883

Google Scholar

[33] C. Müller, U. Holzwarth, J.K. Gregory, Influence of nitriding on microstructure and fatigue behaviour of a solute-rich beta titanium alloy, Fatigue Fract. Eng. Mater. Struct. 20 (1997) 1665-1676.

DOI: 10.1111/j.1460-2695.1997.tb01519.x

Google Scholar

[34] I.N. Pogrelyuk, On the problem of intensification of nitriding of titanium alloys, Met. Sci. Heat Treat. 41 (1999) 242-245.

DOI: 10.1007/bf02468236

Google Scholar

[35] C. Ponticaud, A. Guillou, P. Lefort, Corrosion behavior of Pirac nitrided Ti-6Al-4V surgical alloy, Phys. Chem. Chem. Phys. 2 (2000) 1709-1715.

DOI: 10.1039/a909520i

Google Scholar

[36] A. Shenhar, I. Gotman, S. Radin, P. Ducheyne, E.Y. Gutmanas, Titanium nitride coatings on surgical titanium alloys produced by a powder immersion reaction assisted coating method: residual stresses and fretting behavior, Surf. Coat. Technol. 126 (2000).

DOI: 10.1016/s0257-8972(00)00524-7

Google Scholar

[37] D. Starosvetsky, A. Shenhar, I. Gotman, Corrosion behavior of PIRAC nitrided Ti-6Al-4V surgical alloy, J. Mater. Sci-Mater. M. 12 (2001) 145-150.

Google Scholar

[38] F. Berberich, W. Matz, E. Richter, N. Schell, In situ study of phase transformation at elevated temperature and correlated mechanical degradation of nitrogen implanted Ti-6Al-4V alloys, Biannual Report 1999/2000, Project-Group ESRF-Beamline (2001).

Google Scholar

[39] D.P. Shashkov, Effect of nitriding on mechanical properties and wear resistance of titanium alloys Met. Sci. Heat Treat. 43 (2001) 233-237.

Google Scholar

[40] A. Denoirjean, P. Lefort, P. Fauchais, Nitridation process and mechanism of Ti–6Al–4V particles by dc plasma spraying, Phys. Chem. Chem. Phys. 5 (2003) 5133-5138.

DOI: 10.1039/b311186p

Google Scholar

[41] S. Malinov, A. Zhecheva, W. Sha, Nitriding of titanium and aluminum alloys, Met. Sci. Heat Treat. 46 (2004) 286-293.

DOI: 10.1023/b:msat.0000048836.23370.69

Google Scholar

[42] A. Zhecheva, W. Sha, S. Malinov, A. Long, Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods, Surf. Coat. Technol. 200 (2005) 2192-2207.

DOI: 10.1016/j.surfcoat.2004.07.115

Google Scholar

[43] D. Monova, J.W. Gerlach, H. Neumann, W. Assmann, S. Mandl, Phase formation in Ti after high fluence/high temperature nitrogen implantation Nucl. Instrum. Meth. B 242 (2006)n282-284.

DOI: 10.1016/j.nimb.2005.08.058

Google Scholar

[44] M.I. Sarro, D.A. Moreno, C. Ranninger, E. King, J. Ruiz, Influence of gas nitriding of Ti6Al4V alloy at high temperature on the adhesion of Staphylococcus aureus, Surf. Coat. Technol. 201 (2006) 2807-2812.

DOI: 10.1016/j.surfcoat.2006.05.023

Google Scholar

[45] A. Zhecheva, S. Malinov, W. Sha, Titanium alloys after surface gas nitriding, Surf. Coat. Technol. 201 (2006) 2467-2474.

DOI: 10.1016/j.surfcoat.2006.04.019

Google Scholar

[46] W. Sha, A.M.F. Pg H. Ali, X. Wu, Gas nitriding of titanium alloy Timetal 205, Surf. Coat. Technol. 202 (2008) 5832-5837.

DOI: 10.1016/j.surfcoat.2008.06.155

Google Scholar

[47] M. Nakai, M. Niinomi, T. Akahori, N. Ohtsu, H. Nishimura, H. Toda, H. Fukui, M. Ogawa, Surface hardening of biomedical Ti–29Nb–13Ta–4. 6Zr and Ti–6Al–4V ELI by gas nitriding, Mat. Sci. Eng. A-Struct. 486 (2008) 193-201.

DOI: 10.1016/j.msea.2007.08.065

Google Scholar

[48] T.M. Manhabosco, S.M. Tamborim, C.B. dos Santos, I.L. Müller, Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution, Corros. Sci. 53 (2011) 1786-1793.

DOI: 10.1016/j.corsci.2011.01.057

Google Scholar

[49] I. Pohrelyuk, V. Fedirko, Chemico-Thermal Treatment of Titanium Alloys-Nitriding, Titanium alloys-towards achieving enhanced properties for diversified applications, A.K.M. Nurul Amin (Ed. ), InTech open access book, (2012).

DOI: 10.5772/36546

Google Scholar

[50] D.B. Lee, I. Pohrelyuk, O. Yaskiv, J.C. Lee, Gas nitriding and subsequent oxidation of Ti-6Al- 4V alloys, Nanoscale Res. Lett., 7: 21 (2012) 1-5.

DOI: 10.1186/1556-276x-7-21

Google Scholar

[51] Y. Paransky, I. Gotman, E.Y. Gutmanas, Reactive phase formation at AlN–Ti and AlN–TiAl interfaces Mat. Sci. Eng. A-Struct. 277 (2000) 83-94.

DOI: 10.1016/s0921-5093(99)00544-4

Google Scholar

[52] B. Zhao, J. Sun, J. Sheng Wu, Z. Xin Yuan, Gas nitriding behavior of TiAl based alloys in an ammonia atmosphere, Scripta Mater. 46 (2002) 581-586.

DOI: 10.1016/s1359-6462(02)00030-1

Google Scholar

[53] H. Mohseni, P. Nandwana, A. Tsoi, R. Banerjee, T.W. Scharf, In situ nitrided titanium alloys: Microstructural evolution during solidification and wear, Acta Mater. 83 (2015) 61–74.

DOI: 10.1016/j.actamat.2014.09.026

Google Scholar

[54] F. Seahjani, Nitriding of titanium alloys, PhD Thesis (continuing), Istanbul Technical University. Istanbul.

Google Scholar

[55] F. Seahjani, E. Atar, H. Cimenoglu, Structural changes imposed by gas nitriding on the surface of Ti6Al7Nb alloy, Material Science and Heat Treatment, accepted for publication.

DOI: 10.1007/s11041-016-9983-x

Google Scholar

[56] A.G. Matuschka, Boronizing, Carl Hansen Verlag München Wien, (1980).

Google Scholar

[57] Heat Treating, ASM Hndbook Volume 4, ASM International, Ohio, (1991).

Google Scholar

[58] L.C. Casteletti, F.A.P. Fernandes, S.C. Heck, C.K.N. Oliveira, A. Lombardi-Neto, G.E. Totten, Pack and Salt Bath Diffusion Treatments on Steels, Heat Treating Progress (2009) 49-52.

Google Scholar

[59] E. Atar, E.S. Kayalı, H. Cimenoglu, Characteristics and Wear Performance of Borided Ti6Al4V Alloy, Surf. Coat. Technol., 202 (2008) 4583-4590.

DOI: 10.1016/j.surfcoat.2008.03.011

Google Scholar

[60] J. Brandstötter, W. Lengauer, Multiphase reaction diffusion in transition metal-boron systems, J. Alloys Compd. 262-263 (1997) 390-396.

DOI: 10.1016/s0925-8388(97)00342-3

Google Scholar

[61] P. Kaestner, J. Olfe, K.T. Rie, Plasma-assisted boriding of pure titanium and TiAl6V4, Surf. Coat. Technol. 142-144 (2001) 248-252.

DOI: 10.1016/s0257-8972(01)01244-0

Google Scholar

[62] K. G. Anthymidis, D. N. Tsipas, E. Stergioudis, Boriding of titanium alloys in a fluidized bed reactor, J. Mater. Sci. Lett. 20 (2001) 2067–(2069).

DOI: 10.1016/s0167-577x(01)00283-x

Google Scholar

[63] K.G. Anthymidis, G. Stergioudis and D.N. Tsipas, Boride coatings on non-ferrous materials in a fluidized bed reactor and their properties Sci. Techol. Adv. Mater. 3 (2002) 303-311.

DOI: 10.1016/s1468-6996(02)00038-4

Google Scholar

[64] D.N. Tsipas, K.G. Anthymidis and Y. Flitris, Deposition of hard and/or corrosion resistant, single and multielement coatings on ferrous and nonferrous alloys in a fluidized bed reactor J. Mater. Process. Technol. 134 (2003) 145-152.

DOI: 10.1016/s0924-0136(02)00434-x

Google Scholar

[65] A.O. Prytula, I.M. Pohrelyuk, O.I. Yas'kiv, Investigation of the surface layers of titanium after thermodiffusive saturation in boron-containing medium, Mater. Sci. 40 (2004) 60-64.

DOI: 10.1023/b:masc.0000042785.71764.df

Google Scholar

[66] L. He, X. Zhang, L. Tong, Surface modification of pure titanium treated with B4C at high temperature, Surf. Coat. Technol. 200 (2006) 3016-3020.

DOI: 10.1016/j.surfcoat.2004.10.120

Google Scholar

[67] H. Çelikkan, M. K. Öztürk, H. Aydin, M. L. Aksu, Boriding titanium alloys at lower temperatures using electrochemical methods, Thin Solid Films 515 (2007) 5348-5352.

DOI: 10.1016/j.tsf.2007.01.020

Google Scholar

[68] N.M. Tikekar, K.S. Ravi Chandran and A. Sanders, Nature of growth of dual titanium boride layers with nanostructured titanium boride whiskers on the surface of titanium, Scripta Mater. 57 (2007) 273-276.

DOI: 10.1016/j.scriptamat.2007.03.050

Google Scholar

[69] C. Lee, A. Sanders, N. Tikekar, K.S. Ravi Chandran, Tribology of titanium boride-coated titanium balls against alumina ceramic: Wear, friction, and micromechanisms, Wear, 265 (2008) 375-386.

DOI: 10.1016/j.wear.2007.11.011

Google Scholar

[70] F. Li, X. Yi, J. Zhang, Z. Fan, D. Gong, Z. Xi, Growth kinetics of titanium boride layers on the surface of Ti6Al4V, Acta Metall. Sin. (Engl. Lett. ), 23 (2010) 293-300.

Google Scholar

[71] G. Kartal, S. Timur, M. Urgen, A. Erdemir, Electrochemical boriding of titanium for improved mechanical properties, Surf. Coat. Technol. (204) 2010 3935-3939.

DOI: 10.1016/j.surfcoat.2010.05.021

Google Scholar

[72] Z. Fan, Z.X. Guo, B. Cantor, The kinetics and mechanism of interfacial reaction in sigma fibre-reinforced Ti MMCs, Composites Part A, 28A (1997) 131-140.

DOI: 10.1016/s1359-835x(96)00105-4

Google Scholar

[73] M.E. Hyman, C. McCullough, J.J. Valencia, C.G. Levi, R. Mehrabian, Microstructure evolution in TiAl alloys with B additions: conventional solidification, Metall. Trans. A 20A (1989) 1847-1859.

DOI: 10.1007/bf02663215

Google Scholar