[1]
R. Boyer, G. Welsch, E.W. Collings, Materials properties handbook: Titanium alloys, ASM International, Ohio, (1994).
Google Scholar
[2]
M.J. Donachie, Titanium: A Technical Guide, ASM International, Ohio, (1989).
Google Scholar
[3]
M.A. Imam, A.C. Fraker, Titanium alloys as implant materials, in: S.A. Brown, J.E. Lemons, (Eds. ), Medical applications of titanium and its alloys, ASTM, Philadelphia, 1996, pp.3-15.
DOI: 10.1520/stp16066s
Google Scholar
[4]
D.M. Brunette, B. Tengwall, M. Textor, P. Thomsen, Titanium in Medicine, Springer Verlag, Heidelberg, (2001).
Google Scholar
[5]
M. Long, H.J. Rack, Titanium alloys in total joint replacement-a materials science perspective, Biomaterials 19 (1998) 1621-1639.
DOI: 10.1016/s0142-9612(97)00146-4
Google Scholar
[6]
H. Dong, T. Bell, Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment, Wear 238 (2000) 131-137.
DOI: 10.1016/s0043-1648(99)00359-2
Google Scholar
[7]
C. Boettcher, T. Bell, H. Dong, Surface engineering of Timet 550 with oxygen to form a rutile-based wear resistant coating, Metall. Mater. Trans. A 33 (2002) 1201-1211.
DOI: 10.1007/s11661-002-0221-3
Google Scholar
[8]
P. -Y. Qi, X.Y. Li, H. Dong, T. Bell, Characterization of the palladium-modified thermal oxidation-treated titanium, Mat. Sci. Eng. A Sruct. 326 (2002) 330-342.
DOI: 10.1016/s0921-5093(01)01701-4
Google Scholar
[9]
D.H. Buckley, K. Miyoshi, Friction and wear of ceramics, Wear 100 (1984) 333–353.
DOI: 10.1016/0043-1648(84)90020-6
Google Scholar
[10]
D.H. Buckley, Surface effects in adhesion, friction, wear, and lubrication, Elsevier, Amsterdam, (1981).
Google Scholar
[11]
B. Bhushan, Principles and applications of tribology, John Wiley and Sons, New York, (2013).
Google Scholar
[12]
Leyens, C., Peters, M., (2003). Titanium and titanium Alloys: Fundamentals and applications, Wiley-VCH, Weinheim.
Google Scholar
[13]
E. Rabinowicz, Lubricants for titanium, Met. Prog. 67 1(955 112-114.
Google Scholar
[14]
A. Shapiro, H. Gisser, Lubrication of titanium surfaces modified by metallic diffusion, ASLE Trans. 6 (1963) 40-48.
DOI: 10.1080/05698196308971997
Google Scholar
[15]
G.W. Stachowiak, A.W. Bachelor, Engineering Tribology, Butterworth Heinemann, Boston, (2001).
Google Scholar
[16]
P.A. Dearnley, A brief review of test methodologies for surface-engineered biomedical implant alloys, Surf. Coat. Tech. 198 2005 483– 490.
DOI: 10.1016/j.surfcoat.2004.10.067
Google Scholar
[17]
Information on http: /www. webelements. com.
Google Scholar
[18]
Alloy phase diagrams, ASM Handbook Volume 3, ASM international, Ohio, (1992).
Google Scholar
[19]
F.M. Guclu, H. Cimenoglu, E.S. Kayali, The recrystallization and thermal oxidation behavior of cp-titanium, Mat. Sci. Eng. C 56 (2006) 367-1372.
Google Scholar
[20]
H. Guleryuz, H. Cimenoglu, Effect of thermal oxidation on corrosion and corrosion–wear behaviour of a Ti–6Al–4V alloy, Biomaterials 25 (2004) 3325–3333.
DOI: 10.1016/j.biomaterials.2003.10.009
Google Scholar
[21]
H. Guleryuz, H. Cimenoglu, Surface modification of a Ti–6Al–4V alloy by thermal oxidation, Surf. Coat. Tech. 192 (2005) 164-170.
DOI: 10.1016/j.surfcoat.2004.05.018
Google Scholar
[22]
M.D. Unlu, O. Meydanoglu, H. Cimenoglu Air Oxidation Behaviour of a Ti-6Al-7Nb Alloy, Defect. Diffus. Forum 297-301 (2010) 1389-1394.
DOI: 10.4028/www.scientific.net/ddf.297-301.1389
Google Scholar
[23]
H. Cimenoglu, O. Meydanoglu, M. Baydogan, H. Bermek, P. Huner, E.S. Kayali, Characterization of thermally oxidized Ti6Al7Nb alloy for biological applications, Met. Mater. Int. 17 (2011) 765-770.
DOI: 10.1007/s12540-011-1011-5
Google Scholar
[24]
M. Cingi, O. Meydanoglu, H. Güleryüz, M. Baydogan, H. Çimenoğlu, E.S. Kayali, [High cycle fatigue behavior of thermally oxidized Ti6Al4V alloy, Mater. Sci. Forum 561-565 (2007) 2179-2182.
DOI: 10.4028/www.scientific.net/msf.561-565.2179
Google Scholar
[25]
P.A. Dearnley, K.L. Dahm, H. Cimenoglu, The corrosion–wear behaviour of thermally oxidised Cp–Ti and Ti–6Al–4V, Wear 256 (2004) 469-479.
DOI: 10.1016/s0043-1648(03)00557-x
Google Scholar
[26]
H. Guleryuz, H. Cimenoglu, F. Muhaffel, Oxidized titanium, in: MateriJals for joint arthroplasty - biotribology of potential bearings, R. Sonntag, J.P. Kretzer (Eds. ), Imperial College Press, in press.
DOI: 10.1142/9781783267170_0012
Google Scholar
[27]
S. Weissman, A. Shrier, Strain distribution in oxidized alpha titanium crystals, in: R.I. Jaffee, N.E. Promisel (Eds. ), The science, technology and application of titanium, Pergamon Press, London, 1968, pp: 441-458.
DOI: 10.1016/b978-0-08-006564-9.50054-3
Google Scholar
[28]
H. Dong, X.Y. Li, Oxygen boost diffusion for the deep-case hardening of titanium alloys, Mater. Sci. Eng. A Sruct. 280 (2000) 303-310.
DOI: 10.1016/s0921-5093(99)00697-8
Google Scholar
[29]
P. Kofstad, High Temperature Corrosion, Elsevier Applied Science, Essex, (1988).
Google Scholar
[30]
H. Guleryuz, Surface modification of Ti6Al4V alloy by thermal oxidation, MSc thesis, Istanbul Technical University, (2003).
Google Scholar
[31]
H. Guleryuz, H. Cimenoglu, Oxidation of Ti–6Al–4V alloy, J. Alloy. Compd. 472 (2009) 241–246.
DOI: 10.1016/j.jallcom.2008.04.024
Google Scholar
[32]
G.G. Maksimovich, I.N. Pogrelyuk, V.N. Fedirko, Structure formation in nitrided layers of titanium alloys, Met. Sci. Heat. Treat. 28 (1986) 393-397.
DOI: 10.1007/bf00836883
Google Scholar
[33]
C. Müller, U. Holzwarth, J.K. Gregory, Influence of nitriding on microstructure and fatigue behaviour of a solute-rich beta titanium alloy, Fatigue Fract. Eng. Mater. Struct. 20 (1997) 1665-1676.
DOI: 10.1111/j.1460-2695.1997.tb01519.x
Google Scholar
[34]
I.N. Pogrelyuk, On the problem of intensification of nitriding of titanium alloys, Met. Sci. Heat Treat. 41 (1999) 242-245.
DOI: 10.1007/bf02468236
Google Scholar
[35]
C. Ponticaud, A. Guillou, P. Lefort, Corrosion behavior of Pirac nitrided Ti-6Al-4V surgical alloy, Phys. Chem. Chem. Phys. 2 (2000) 1709-1715.
DOI: 10.1039/a909520i
Google Scholar
[36]
A. Shenhar, I. Gotman, S. Radin, P. Ducheyne, E.Y. Gutmanas, Titanium nitride coatings on surgical titanium alloys produced by a powder immersion reaction assisted coating method: residual stresses and fretting behavior, Surf. Coat. Technol. 126 (2000).
DOI: 10.1016/s0257-8972(00)00524-7
Google Scholar
[37]
D. Starosvetsky, A. Shenhar, I. Gotman, Corrosion behavior of PIRAC nitrided Ti-6Al-4V surgical alloy, J. Mater. Sci-Mater. M. 12 (2001) 145-150.
Google Scholar
[38]
F. Berberich, W. Matz, E. Richter, N. Schell, In situ study of phase transformation at elevated temperature and correlated mechanical degradation of nitrogen implanted Ti-6Al-4V alloys, Biannual Report 1999/2000, Project-Group ESRF-Beamline (2001).
Google Scholar
[39]
D.P. Shashkov, Effect of nitriding on mechanical properties and wear resistance of titanium alloys Met. Sci. Heat Treat. 43 (2001) 233-237.
Google Scholar
[40]
A. Denoirjean, P. Lefort, P. Fauchais, Nitridation process and mechanism of Ti–6Al–4V particles by dc plasma spraying, Phys. Chem. Chem. Phys. 5 (2003) 5133-5138.
DOI: 10.1039/b311186p
Google Scholar
[41]
S. Malinov, A. Zhecheva, W. Sha, Nitriding of titanium and aluminum alloys, Met. Sci. Heat Treat. 46 (2004) 286-293.
DOI: 10.1023/b:msat.0000048836.23370.69
Google Scholar
[42]
A. Zhecheva, W. Sha, S. Malinov, A. Long, Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods, Surf. Coat. Technol. 200 (2005) 2192-2207.
DOI: 10.1016/j.surfcoat.2004.07.115
Google Scholar
[43]
D. Monova, J.W. Gerlach, H. Neumann, W. Assmann, S. Mandl, Phase formation in Ti after high fluence/high temperature nitrogen implantation Nucl. Instrum. Meth. B 242 (2006)n282-284.
DOI: 10.1016/j.nimb.2005.08.058
Google Scholar
[44]
M.I. Sarro, D.A. Moreno, C. Ranninger, E. King, J. Ruiz, Influence of gas nitriding of Ti6Al4V alloy at high temperature on the adhesion of Staphylococcus aureus, Surf. Coat. Technol. 201 (2006) 2807-2812.
DOI: 10.1016/j.surfcoat.2006.05.023
Google Scholar
[45]
A. Zhecheva, S. Malinov, W. Sha, Titanium alloys after surface gas nitriding, Surf. Coat. Technol. 201 (2006) 2467-2474.
DOI: 10.1016/j.surfcoat.2006.04.019
Google Scholar
[46]
W. Sha, A.M.F. Pg H. Ali, X. Wu, Gas nitriding of titanium alloy Timetal 205, Surf. Coat. Technol. 202 (2008) 5832-5837.
DOI: 10.1016/j.surfcoat.2008.06.155
Google Scholar
[47]
M. Nakai, M. Niinomi, T. Akahori, N. Ohtsu, H. Nishimura, H. Toda, H. Fukui, M. Ogawa, Surface hardening of biomedical Ti–29Nb–13Ta–4. 6Zr and Ti–6Al–4V ELI by gas nitriding, Mat. Sci. Eng. A-Struct. 486 (2008) 193-201.
DOI: 10.1016/j.msea.2007.08.065
Google Scholar
[48]
T.M. Manhabosco, S.M. Tamborim, C.B. dos Santos, I.L. Müller, Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution, Corros. Sci. 53 (2011) 1786-1793.
DOI: 10.1016/j.corsci.2011.01.057
Google Scholar
[49]
I. Pohrelyuk, V. Fedirko, Chemico-Thermal Treatment of Titanium Alloys-Nitriding, Titanium alloys-towards achieving enhanced properties for diversified applications, A.K.M. Nurul Amin (Ed. ), InTech open access book, (2012).
DOI: 10.5772/36546
Google Scholar
[50]
D.B. Lee, I. Pohrelyuk, O. Yaskiv, J.C. Lee, Gas nitriding and subsequent oxidation of Ti-6Al- 4V alloys, Nanoscale Res. Lett., 7: 21 (2012) 1-5.
DOI: 10.1186/1556-276x-7-21
Google Scholar
[51]
Y. Paransky, I. Gotman, E.Y. Gutmanas, Reactive phase formation at AlN–Ti and AlN–TiAl interfaces Mat. Sci. Eng. A-Struct. 277 (2000) 83-94.
DOI: 10.1016/s0921-5093(99)00544-4
Google Scholar
[52]
B. Zhao, J. Sun, J. Sheng Wu, Z. Xin Yuan, Gas nitriding behavior of TiAl based alloys in an ammonia atmosphere, Scripta Mater. 46 (2002) 581-586.
DOI: 10.1016/s1359-6462(02)00030-1
Google Scholar
[53]
H. Mohseni, P. Nandwana, A. Tsoi, R. Banerjee, T.W. Scharf, In situ nitrided titanium alloys: Microstructural evolution during solidification and wear, Acta Mater. 83 (2015) 61–74.
DOI: 10.1016/j.actamat.2014.09.026
Google Scholar
[54]
F. Seahjani, Nitriding of titanium alloys, PhD Thesis (continuing), Istanbul Technical University. Istanbul.
Google Scholar
[55]
F. Seahjani, E. Atar, H. Cimenoglu, Structural changes imposed by gas nitriding on the surface of Ti6Al7Nb alloy, Material Science and Heat Treatment, accepted for publication.
DOI: 10.1007/s11041-016-9983-x
Google Scholar
[56]
A.G. Matuschka, Boronizing, Carl Hansen Verlag München Wien, (1980).
Google Scholar
[57]
Heat Treating, ASM Hndbook Volume 4, ASM International, Ohio, (1991).
Google Scholar
[58]
L.C. Casteletti, F.A.P. Fernandes, S.C. Heck, C.K.N. Oliveira, A. Lombardi-Neto, G.E. Totten, Pack and Salt Bath Diffusion Treatments on Steels, Heat Treating Progress (2009) 49-52.
Google Scholar
[59]
E. Atar, E.S. Kayalı, H. Cimenoglu, Characteristics and Wear Performance of Borided Ti6Al4V Alloy, Surf. Coat. Technol., 202 (2008) 4583-4590.
DOI: 10.1016/j.surfcoat.2008.03.011
Google Scholar
[60]
J. Brandstötter, W. Lengauer, Multiphase reaction diffusion in transition metal-boron systems, J. Alloys Compd. 262-263 (1997) 390-396.
DOI: 10.1016/s0925-8388(97)00342-3
Google Scholar
[61]
P. Kaestner, J. Olfe, K.T. Rie, Plasma-assisted boriding of pure titanium and TiAl6V4, Surf. Coat. Technol. 142-144 (2001) 248-252.
DOI: 10.1016/s0257-8972(01)01244-0
Google Scholar
[62]
K. G. Anthymidis, D. N. Tsipas, E. Stergioudis, Boriding of titanium alloys in a fluidized bed reactor, J. Mater. Sci. Lett. 20 (2001) 2067–(2069).
DOI: 10.1016/s0167-577x(01)00283-x
Google Scholar
[63]
K.G. Anthymidis, G. Stergioudis and D.N. Tsipas, Boride coatings on non-ferrous materials in a fluidized bed reactor and their properties Sci. Techol. Adv. Mater. 3 (2002) 303-311.
DOI: 10.1016/s1468-6996(02)00038-4
Google Scholar
[64]
D.N. Tsipas, K.G. Anthymidis and Y. Flitris, Deposition of hard and/or corrosion resistant, single and multielement coatings on ferrous and nonferrous alloys in a fluidized bed reactor J. Mater. Process. Technol. 134 (2003) 145-152.
DOI: 10.1016/s0924-0136(02)00434-x
Google Scholar
[65]
A.O. Prytula, I.M. Pohrelyuk, O.I. Yas'kiv, Investigation of the surface layers of titanium after thermodiffusive saturation in boron-containing medium, Mater. Sci. 40 (2004) 60-64.
DOI: 10.1023/b:masc.0000042785.71764.df
Google Scholar
[66]
L. He, X. Zhang, L. Tong, Surface modification of pure titanium treated with B4C at high temperature, Surf. Coat. Technol. 200 (2006) 3016-3020.
DOI: 10.1016/j.surfcoat.2004.10.120
Google Scholar
[67]
H. Çelikkan, M. K. Öztürk, H. Aydin, M. L. Aksu, Boriding titanium alloys at lower temperatures using electrochemical methods, Thin Solid Films 515 (2007) 5348-5352.
DOI: 10.1016/j.tsf.2007.01.020
Google Scholar
[68]
N.M. Tikekar, K.S. Ravi Chandran and A. Sanders, Nature of growth of dual titanium boride layers with nanostructured titanium boride whiskers on the surface of titanium, Scripta Mater. 57 (2007) 273-276.
DOI: 10.1016/j.scriptamat.2007.03.050
Google Scholar
[69]
C. Lee, A. Sanders, N. Tikekar, K.S. Ravi Chandran, Tribology of titanium boride-coated titanium balls against alumina ceramic: Wear, friction, and micromechanisms, Wear, 265 (2008) 375-386.
DOI: 10.1016/j.wear.2007.11.011
Google Scholar
[70]
F. Li, X. Yi, J. Zhang, Z. Fan, D. Gong, Z. Xi, Growth kinetics of titanium boride layers on the surface of Ti6Al4V, Acta Metall. Sin. (Engl. Lett. ), 23 (2010) 293-300.
Google Scholar
[71]
G. Kartal, S. Timur, M. Urgen, A. Erdemir, Electrochemical boriding of titanium for improved mechanical properties, Surf. Coat. Technol. (204) 2010 3935-3939.
DOI: 10.1016/j.surfcoat.2010.05.021
Google Scholar
[72]
Z. Fan, Z.X. Guo, B. Cantor, The kinetics and mechanism of interfacial reaction in sigma fibre-reinforced Ti MMCs, Composites Part A, 28A (1997) 131-140.
DOI: 10.1016/s1359-835x(96)00105-4
Google Scholar
[73]
M.E. Hyman, C. McCullough, J.J. Valencia, C.G. Levi, R. Mehrabian, Microstructure evolution in TiAl alloys with B additions: conventional solidification, Metall. Trans. A 20A (1989) 1847-1859.
DOI: 10.1007/bf02663215
Google Scholar