[1]
A.E. Berkowitz, W.J. Schuele, and P.J. Flanders, J. Appl. Phys., 39 (1968) 1261-1264.
Google Scholar
[2]
A. Marinin, Synthesis and Characterization of Superparamagnetic Iron Oxide Nanoparticles Coated with Silica, Master Thesis, Stockholm, (2012).
Google Scholar
[3]
L.L. Vatta, R.D. Sanderson, and K.R. Koch, Magnetic Nanoparticles: Properties and Potential Applications, Pure Appl. Chem., 78 (2006) 1793-1801.
DOI: 10.1351/pac200678091793
Google Scholar
[4]
A.H. Lu, E.L. Salabas, and F. Schuth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angew. Chem. Int. Ed., 46 (2007) 1222-1244.
DOI: 10.1002/anie.200602866
Google Scholar
[5]
A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Wilson and T.R. Lee, Tuning the Magnetic Properties of Nanoparticles, International Journal of Molecular Sciences, 14 (2013) 15977-16009.
DOI: 10.3390/ijms140815977
Google Scholar
[6]
C. Kittel, Physical Theory of Ferromagnetic Domains, Rev. Mod. Phys., 21 (1949) 541-583.
DOI: 10.1103/revmodphys.21.541
Google Scholar
[7]
R.H. Kodama, A.E. Berkowitz, E.J. McNiff, and S. Foner, Phys. Rev. Let., 77 (1996) 394-397.
Google Scholar
[8]
H. Mamiya, I. Nakatani, and T. Furubayashi, Phys. Rev. Lett., 80 (1998) 177-180.
Google Scholar
[9]
Z.X. Tang, C.M. Sorensen, K.J. Kalabunde, and G.C. Hadjipanayis, Phys. Rev. Lett., 67 (1991) 3602-3605.
Google Scholar
[10]
V.I. Nikolaev and A.M. Shipilin, The Influence of Breaking of Exchange Bonds on the Curie Temperature, Physics of the Solid State, 45 (2003) 1079-1080.
DOI: 10.1134/1.1583793
Google Scholar
[11]
W.H. Zhong, C.Q. Sun, and S. Li, Size Effect on the Magnetism of Nanocrystalline Ni Films at Ambient Temperature, Solid State Commun., 130 (2004) 603-606.
DOI: 10.1016/j.ssc.2004.03.025
Google Scholar
[12]
W.H. Zhong, C.Q. Sun, H.L. Bai, and E.Y. Jiang, Impact of Bond-Order Loss on Surface and Nanosolid Magnetism, Acta Mater., 53 (2005) 3207-3214.
DOI: 10.1016/j.actamat.2005.03.025
Google Scholar
[13]
H.M. Lu, W.T. Zheng, and Q. Jiang, Saturation Magnetization of Ferromagnetic and Ferrimagnetic Nanocrystals at Room Temperature, J. Phys. D: Appl. Phys., 40 (2007) 320-325.
DOI: 10.1088/0022-3727/40/2/006
Google Scholar
[14]
S. Bedanta, Supermagnetism in Magnetic Nanoparticle Systems, PhD Thesis, (2006).
Google Scholar
[15]
F. Bodker, S. Morup, and S. Linderoth, Surface Effects in Metallic Iron Nanoparticles, Phys. Rev. Lett., 72 (1994) 282-285.
DOI: 10.1103/physrevlett.72.282
Google Scholar
[16]
J. Avice, Surface Effects in AC Heating Process of Magnetic Nanoparticles used in Hyperthermia, Report, (2013).
Google Scholar
[17]
C. Q. Sun, W. H. Zhong, S. Li, B. K. Tay, H. L. Bai and E. Y. Jiang, Coordination Imperfection Suppressed Phase Stability of Ferromagnetic, Ferroelectric and Superconductive Nanosolids, J. Phys. Chem., 108 (2004) 1080-1084.
DOI: 10.1021/jp0372946
Google Scholar
[18]
http: /en. wikipedia. org/wiki/Ferrimagnetism.
Google Scholar
[19]
W.J. Minkowycz, E.M. Sparrow, and J.P. Abraham, Nanoparticle Heat Transfer and Fluid Flow, CRS Press, Baca Raton, London, New York, (2013).
Google Scholar
[20]
R. Hergt, S. Dutz, R. Muller, and M. Zeisberger, Magnetic Field Hyperthermia: Nanoparticle Magnetism and Materials Development for Cancer Therapy, Journal of Physics: Condensed Matter, 18 (2006) S2919-S2934.
DOI: 10.1088/0953-8984/18/38/s26
Google Scholar
[21]
M. Mahdevi, M.B. Ahmad, Md.J. Haron, and M.Z.A. Rahman, Synthesis, Surface Modification and Characterisation of Biocompatible Magnetic Iron Oxide Nanoparticles for Biomedical Applications, Molecules, 18 (2013) 7533-7548.
DOI: 10.3390/molecules18077533
Google Scholar
[22]
A. Marinin, Synthesis and Characterization of Superparamagnetic Iron Oxide Nanoparticles Coated with Silica, Master Thesis, Stockholm, (2012).
Google Scholar
[23]
P. Abdulkin, T. Houlding, B.R. Knappett, A.B. Lukawska, V. Degirmenci, D.A. Jefferson, G. Kozlowski, E.V. Rebrov, and A.E.H. Wheatley, Synthesis and Size Control in Magnetically Active Fe and Co Nanoparticle Systems, in preparation.
DOI: 10.4028/www.scientific.net/ddf.336.159
Google Scholar
[24]
G. Kozlowski, Z. Jagoo, A. Lukawska, A. Wheately, Z. Turgut, and H. Kosai, Ac Magnetic Heating of Superparamagnetic Fe and Co Nanoparticles, Core Scholar, Wright State University, 2012. Carbon and Oxide Based Nanostructured Materials.
DOI: 10.4028/www.scientific.net/ddf.336.159
Google Scholar
[25]
S.P. Gubin, Magnetic Nanoparticles, WILEY-VCH Verlag GmbH & Co., (2009).
Google Scholar
[26]
Z. Jagoo, Radio Frequency Heating of Magnetic Nanoparticles, Master Thesis, Ohio Link (2012).
Google Scholar
[27]
P. MacCabee, V. Amassian, L. Eberle, and R. Cracco, Magnetic Coil Stimulation of Straight and Bent Amphibian and Mammalian Peripheral Nerve in Vitro: Locus of Excitation, The Journal of Physiology, 460 (1993) 201-219.
DOI: 10.1113/jphysiol.1993.sp019467
Google Scholar
[28]
J.R. LaCourse, W.T. Miller, and M. Vogt, Effect of High Frequency-Current on Nerve and Muscle Tissue, Biomed. Eng., IEEE Transactions, 32 (1985) 82-86.
DOI: 10.1109/tbme.1985.325636
Google Scholar
[29]
J. Reilly, Peripheral Nerve Simulation by Induced Electric Currents: Exposure to Time-Varying Magnetic Fields, Medical and Biological Eng. and Computing, 27 (1989) 101-109.
DOI: 10.1007/bf02446217
Google Scholar
[30]
R. Bickford, M. Guidi, P. Fortesque, and M. Swenson, Magnetic Simulation of Human Peripheral Nerve and Brain: Response Enhancement by Combined Magnetoelectrical Technique, Neurosurgery, 20 (1987) 110-116.
DOI: 10.1097/00006123-198701000-00025
Google Scholar
[31]
http: /www. mediahex. com/Vacuum_Pump (online link vacuum pump).
Google Scholar
[32]
E. Cheraghipour, S. Javadpour, and A.R. Mehdizadeh, Citrate Capped Superparamagnetic Iron Oxide Nanoparticles Used for Hyperthermia Therapy, Biomedical Science and Engineering, 5 (2012) 715-719.
DOI: 10.4236/jbise.2012.512089
Google Scholar
[33]
J. Motoyama, T. Hakata, R. Kato, N. Yamashita, T. Morino, T. Kobayashi, and H. Honda, Size Dependent Heat Generation of Magnetic Nanoparticles under AC Magnetic Field for Cancer Therapy, BioMagnetic Research and Technology, 4 (2008) 1-9.
DOI: 10.1186/1477-044x-6-4
Google Scholar
[34]
W. Andra, C.G. d'Ambly, R. Hergt, I. Hilger, and W.A. Kaiser, Temperature Distribution as a Function of Time around a Small Spherical Heat Source of Local Magnetic Hyperthermia, Journal of Magnetism and Magnetic Materials, 194 (1999) 197-203.
DOI: 10.1016/s0304-8853(98)00552-6
Google Scholar
[35]
P. Pradhan, J. Giri, G. Samanta, H.D. Sharma, K.P. Mishra, J. Bellare, R. Banerjee, and D. Bahadur, Comparative Evaluation of Heating Ability and Biocompatibility of Different Ferrite-Based Magnetic Fluids for Hyperthermia Application, WILEY Inter Science, (www. interscience. wiley. com), (2006).
DOI: 10.1002/jbm.b.30630
Google Scholar
[36]
H. Khurshid, M. Phan, P. Mukherjee, and H. Srikanth, Tuning Exchange Bias in Fe/γ- Fe2O3 Core-Shell Nanoparticles: Impacts of Interface and Surface Spins, Applied Physics Letters, 104 (2014) 072407-1-072407-5.
DOI: 10.1063/1.4865904
Google Scholar
[37]
A. F. Rodriguez, A. Kleibert, J. Bansmann, A. Voitkans, L. J. Heyderman, and F. Nolting, Size-Dependent Spin Structures in Iron Nanoparticles, Phys. Rev. Lett., 104 (2010) 127201-127204.
DOI: 10.1103/physrevlett.104.127201
Google Scholar
[38]
A. Kakay and L. K. Varga, Monodomain Critical Radius for Soft-Magnetic Fine Particles, Journal of Applied Physics, 97 (2005) 083901-083904.
DOI: 10.1063/1.1844612
Google Scholar
[39]
S. Zhu, Synthesis of Size, Structure and Shape Controlled Iron Based Magnetic Nanomaterials, Master Thesis, Case Western Reserve University, (2012).
Google Scholar
[40]
http: /en. wikipedia. org/wiki/Gas_constant. http: /en. wikipedia. org/wiki/Solenoid (online link).
Google Scholar