The Role of Interfaces in Nanomaterials Behavior at Extremes

Abstract:

Article Preview

The main statements of nanomaterials concept are shortly considered. Current developments in the metallic nanomaterials stability under thermal, irradiation, deformation and corrosion actions are generalized and discussed in detail. Special attention is paid to possible prediction of thermal grain growth characteristics using the regular solution approximation. The key role of nanotwinned interfaces in the stability increase at extremes is described and pointed out. The attention is paid to unresolved and insufficiently studied problems.

Info:

Periodical:

Edited by:

Vladimir V. Popov and Elena N. Popova

Pages:

147-170

Citation:

R.A. Andrievski, "The Role of Interfaces in Nanomaterials Behavior at Extremes", Diffusion Foundations, Vol. 5, pp. 147-170, 2015

Online since:

July 2015

Authors:

Export:

Price:

$41.00

* - Corresponding Author

[1] H. Gleiter, Materials with ultrafine grain size, in: N. Hansen, T. Leffers, H. Lilholt (Eds. ), Deformation of Polycrystals, Proc. of 2nd RISO Symposium on Metallurgy and Materials Science, Roskilde: RISO Nat. Lab., 1981. pp.15-21.

[2] R. Birringer, H. Gleiter, H. -P. Klein, P. Marquard, Nanocrystalline materials: an approach to a novel solid structure with gas-like disorder, Phys. Lett. 102 (1984) 365-369.

DOI: https://doi.org/10.1016/0375-9601(84)90300-1

[3] R. Birringer, U. Herr, H. Gleiter, Nanocrystalline materials – a first report, Trans. Jap. Inst. Met. Suppl. 27 (1986) 43-52.

[4] G. Palumbo, U. Erb, K. Aust, Triple line disclination effect on the mechanical behavior of materials, Scr. Met. Mater. 24 (1990) 1347-1350.

[5] U. Erb, Size effects in electroformed nanomaterials, Key Eng. Mater. 444 (2010) 163-188.

DOI: https://doi.org/10.4028/www.scientific.net/kem.444.163

[6] G. Gleiter, Nanostructured materials: state of the art and perspectives, Z. Metallkd. 86 (1995) 78-83.

[7] V.V. Pokropivny, V.V. Skorokhod, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science, Mater. Sci. Eng. C 27 (2007) 990-993.

DOI: https://doi.org/10.1016/j.msec.2006.09.023

[8] V.E. Fortov, Extreme States of Matter, FIZMATLIT, Moscow, 2010 (in Russian).

[9] A. Misra, L. Thilly, Structural metals at extremes, MRS Bull. 35 (2010) 965-972.

[10] V.E. Fortov, V.B. Mintsev, Extreme states of matter on the earth and in the cosmos: Is there any chemistry beyond the megabar? Russ Chem. Rev. 82 (2013) 597-615.

DOI: https://doi.org/10.1070/rc2013v082n07abeh004394

[11] N. Bourne, Materials in Mechanical Extremes – Fundamentals and Applications, Cambridge University Press, New York, (2013).

[12] H. Gleiter, Nanocrystalline materials, Progress Mater. Sci. 33 (1989) 223-315.

[13] R.A. Andrievski, Stability of nanostructured materials, J. Mater. Sci. 38 (2003) 1367-1375.

[14] L. Hultman, C. Mitterer, Thermal stability of advanced nanostructured wear resistant coatings, in: A. Cavaleiro, J.T. De Hosson (Eds. ), Nanostructured Coatings, Springer, New York, 2006, pp.609-656.

DOI: https://doi.org/10.1007/0-387-48756-5_11

[15] C.C. Koch, I.A. Ovid'ko, S. Seal, S. Veprek, Structural Nanocrystalline Materials: Fundamen-tals and Applications, Cambridge University Press, Cambridge, (2007).

[16] R.A. Andrievski, Effect of irradiation on properties of nanomaterials, Phys. Met. Metallogr. 110 (2010) 229-240.

[17] M.J. Demkowicz, P. Bellon, B.D. Wirth, Atomic-scale design of radiation-tolerant nanocom-posites, MRS Bull. 35 (2010) 992-998.

DOI: https://doi.org/10.1557/mrs2010.704

[18] R.A. Andrievskii, The role of nanoscale effects in the interaction between nanostructured ma-terials and environments, Prot. Met. Phys. Chem. Surf. 49 (2013) 528-540.

DOI: https://doi.org/10.1134/s207020511305002x

[19] R.A. Andrievski, Review of thermal stability of nanomaterials, J. Mater. Sci. 49 (2014) 1449-1460.

[20] R.A. Andrievski, Thermal and radiation stability of nanomaterials, in: Advanced Materials in Extreme Environments, MRS Proceedings, V. 1645, 2014; MRSF13-1645-ZZ03-06. R1; DOI: 10. 1557/opl. 2014. 277.

DOI: https://doi.org/10.1557/opl.2014.277

[21] M. Upmanyu, D.J. Srolovitz, A.E. Lobkovsky, J.A. Warren, W.C. Carter, Simultaneous grain boundary migration and grain rotation, Acta Mater. 54 (2006) 1707–1715.

DOI: https://doi.org/10.1016/j.actamat.2005.11.036

[22] N. Bernstein, The influence of geometry on grain boundary motion and rotation, Acta Mater. 56 (2008) 1106–1113.

DOI: https://doi.org/10.1016/j.actamat.2007.11.002

[23] R. Chaim, Groan coalescence by grain rotation in nanoceramics, Scr. Mater. 66 (2012) 269–271.

[24] I. Zizak, N. Darowski, S. Klaumünzer, G. Schumacher, J.W. Gerlach, Grain rotation in nano-crystalline layers under influence of swift heavy ions. Nucl. Instr. Meth. Phys. Res. B 267 (2009) 944–948.

DOI: https://doi.org/10.1016/j.nimb.2009.02.018

[25] V.Y. Novikov, On grain growth in the presence of mobile particles, Acta Mater. 58 (2010) 3326–3331.

[26] V.Y. Novikov, Microstructure evolution during grain growth in materials with disperse particles, Mater. Lett. 68 (2012) 413–415.

DOI: https://doi.org/10.1016/j.matlet.2011.10.101

[27] V.Y. Novikov, Impact of grain boundary junctions on grain growth in polycrystals with diffe-rent grain sizes, Mater. Lett. 62 (2008) 2067–(2069).

DOI: https://doi.org/10.1016/j.matlet.2007.11.017

[28] G. Gottstein, L.S. Shvindlerman, A novel concept to determine the mobility of grain boundary quadruple junctions, Scr. Mater. 52 (2005) 863–866.

DOI: https://doi.org/10.1016/j.scriptamat.2005.01.008

[29] B. Zhao, G. Gottstein, L.S. Shvindlerman, Triple junction effects in solids, Acta Mater. 59 (2011) 3510–3518.

DOI: https://doi.org/10.1016/j.actamat.2011.02.024

[30] L. Klinger, E. Rabkin, L.S. Shvindlerman, G. Gottstein, Grain growth in porous two-dimen-sional nanocristalline materials, J. Mater. Sci. 43 (2008) 5068-5075.

DOI: https://doi.org/10.1007/s10853-008-2678-y

[31] J.R. Trelewicz, C.A. Schuh, Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys, Phys. Rev. B 79 (2009) 094112 (1-13).

DOI: https://doi.org/10.1103/physrevb.79.094112

[32] T. Chookajorn, H.A. Murdoch, C.A. Schuh, Design of stable nanocrystalline alloys, Science 337 (2012) 951–954.

DOI: https://doi.org/10.1126/science.1224737

[33] H.A. Murdoch, C.A. Schuh, Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 61 (2013) 2121–2132.

DOI: https://doi.org/10.1016/j.actamat.2012.12.033

[34] M. Saber, H. Kotan, C.C. Koch, R.O. Scattergood, Thermodynamic stabilization of nanocrys-talline binary alloys, J. Appl. Phys. 113 (2013) 063515 (1-10).

DOI: https://doi.org/10.1063/1.4791704

[35] K.A. Darling, M.A. Tschopp, B.K. VanLeeuwen, M.A. Atwater, Z.K. Liu, Mitigating grain growth in binary nanocrystalline alloys through solute selection based on thermodynamic stability maps, Comp. Mater. Sci. 84 (2014) 255-266.

DOI: https://doi.org/10.1016/j.commatsci.2013.10.018

[36] M.A. Atwater, R.O. Scattergood, C.C. Koch, The stabilization of nanocrystalline copper by zirconium, Mater. Sci. Eng. A 559 (2013) 250-256.

[37] С.C. Koch, R.O. Scattergood, M. Saber, H. Kotan, High temperature stabilization of nanocrys-talline grain size: thermodynamic versus kinetic strategies, J. Mater. Res. 28 (2013) 1785-1791.

DOI: https://doi.org/10.1557/jmr.2012.429

[38] O. Anderoglu, A. Misra, H. Wang, X. Zhang, Thermal stability of sputtered Cu films with nanoscale growth twins, J. Appl. Phys. 103 (2008) 094322 (1-6).

DOI: https://doi.org/10.1063/1.2913322

[39] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science 304 (2004) 422–426.

DOI: https://doi.org/10.1126/science.1092905

[40] X.C. Liu, H.W. Zhang, K. Lu, Strain-induced ultrahard and ultrastable nanolaminated structure in nickel, Science 342 (2013) 337-340.

DOI: https://doi.org/10.1126/science.1242578

[41] S. Zheng, I.J. Beyerlein, J.S. Carpenter, K. Kang, J. Wang, W. Han, N.A. Mara, High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces, Nature Commun. 4 (2013) 1696-1703.

DOI: https://doi.org/10.1038/ncomms2651

[42] M. Ames, J. Markmann, R. Karos, A. Michels, A. Tschöpe, R. Birringer, Unraveling the nature of room temperature grain growth in nanocrystalline materials, Acta Mater. 56 (2008) 4255-4266.

DOI: https://doi.org/10.1016/j.actamat.2008.04.051

[43] G. Gottstein, L.S. Shvindlerman, B. Zhao, Thermodynamics and kinetics of grain boundary triple junctions in metals: recent developments, Scr. Mater. 62 (2010) 914-917.

DOI: https://doi.org/10.1016/j.scriptamat.2010.03.017

[44] V.Y. Novikov, Origin of microstructure instability in nanocrystalline materials, Mater. Lett. 116 (2014) 268-270.

[45] M. Rose, A.G. Balough, H. Hahn, Instability of irradiation induced defects in nanostructured materials, Nucl. Instr. Meth. Phys. Res. B 127-128 (1997) 119-122.

[46] T.D. Shen, Sh. Feng, , M. Tang, J.A. Valdez, Y. Wang, K.E. Sicafus, Enhanced radiation tolerance in nanocrystalline MgGa2O4, Appl. Phys. Lett. 90 (2007) 263115 (1-3).

DOI: https://doi.org/10.1063/1.2753098

[47] A.R. Kilmametov, D.V. Gunderov, R.Z. Valiev, A.G. Balogh, H. Hahn, Enhanced ion irra-diation resistance of bulk nanocrystalline TiNi alloys, Scr. Mater. 59 (2008) 1027-1030.

DOI: https://doi.org/10.1016/j.scriptamat.2008.06.051

[48] Y. Leconte, I. Monnet, M. Levalois, M. Morales, X. Portier, L. Thome, N. Herlin-Boime, C. Reynaud, Comparison study of structural damage under irradiation in SiC nanostructured and conventional ceramics, in: Mater. Res. Soc. Symp. Proc. V. 981 MRS, Warrendale, 2007, p.1107.

DOI: https://doi.org/10.1557/proc-1043-t02-02

[49] H. Kurushita, S. Kobayashi, K. Nakai, T. Ogawa, A. Hasegawa, K. Abe, H. Arakawa, S. Mat-suo, T. Takida, K. Takebe, M. Kawai, N. Yoshida, Development of ultra-fine grained W-(0. 25-0. 8) wt % TiC and superior resistance to neutron and 3 MeV He-ion, J. Nucl. Mater. 377 (2008).

DOI: https://doi.org/10.1016/j.jnucmat.2008.02.055

[50] B. Radiguet, A. Etienne, P. Pareige, X. Sauvage, R. Valiev, Irradiation behavior of nano-structured 316 austenitic stainless steel, J. Mater. Sci. 43 (2008) 7338-7343.

DOI: https://doi.org/10.1007/s10853-008-2875-8

[51] D.A. McClintock, D.T. Hoelzer, M.A. Sokolov, R.K. Nanstad, Mechanical properties of ir-radiated nanostructured ferritic alloy 14YWT, J. Nucl. Mater. 386-388 (2009) 307-311.

DOI: https://doi.org/10.1016/j.jnucmat.2008.12.104

[52] A. Alsabbagh, R.Z. Valiev, K.L. Murty, Influence of grain size on radiation effects in a low carbon steel, J. Nucl. Mater. 443 (2013) 302-310.

DOI: https://doi.org/10.1016/j.jnucmat.2013.07.049

[53] E.G. Fu, A. Misra, H. Wang, X. Zhang, Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers, J. Nucl. Mater. 407 (2010) 178-188.

DOI: https://doi.org/10.1016/j.jnucmat.2010.10.011

[54] A. Misra, M.J. Demkowicz, X. Zhang, R.G. Hoagland, The radiation damage tolerance of ultrahigh strength nanolayered composites, JOM 52 (2007) 62-65.

DOI: https://doi.org/10.1007/s11837-007-0120-6

[55] X. Zhang, N. Li, O. Anderoglu, H. Wang, , J.G. Swadener, H. Hochbauer. A. Misra, R.G. Hoagland, Nanostructured Cu/Nb multilayer subjected to helium ion-irradiation, Nucl. Instr. Meth. Phys. Res. B 261 (2007) 1129-1132.

DOI: https://doi.org/10.1016/j.nimb.2007.03.098

[56] Y. Gao, T. Yang, J. Xue, S. Yan, S. Zhou, Y. Wang, D.T.K. Kwok, P.K. Chu, Y. Zhang, Radiation tolerance of Cu/W multilayered nanocomposites, J. Nucl. Mater. 413 (2011) 11-15.

[57] H. Wang, Y. Gao, E. Fu, T. Yang, J. Xue, S. Yan, P.K. Chu, Y. Wang, Irradiation effects on multilaye-red W/ZrO2 film under 4 MeV Au ions, J. Nucl. Mater., (2014), accepted for publication.

[58] C.M. Parish, R.M. White, J.M. LeBeau, M.K. Miller, Response of nanostructured ferritic alloys to high-dose heavy ion irradiation, J. Nucl. Mater. 445 (2014) 251-260.

DOI: https://doi.org/10.1016/j.jnucmat.2013.11.002

[59] M. Efe, O. El-Atwani, Y. Guo, D.R. Klenosky, Microstructure refinement of tungsten by surface deformation for irradiation damage resistance, Scr. Mater. 70 (2014) 31-34.

DOI: https://doi.org/10.1016/j.scriptamat.2013.08.013

[60] Y. Zhang, M. Ishimaru, T. Varga, T. Oda, C. Hardiman, H. Xue, Y. Katoh, S. Shannon, W.J. Weber, Nanoscale engineering of radiation tolerant silicon carbide, Phys. Chem. Chem. Phys. 14 (2012) 13429-13436.

DOI: https://doi.org/10.1039/c2cp42342a

[61] M. Ishimaru, Y. Zhang, S. Shannon, W.J. Weber, Origin of radiation tolerance in 3C-SiC with nanolayered planar defects, Appl. Phys. Lett. 103 (2013) 033104 (1-4).

DOI: https://doi.org/10.1063/1.4813593

[62] K.Y. Yu, D. Bufford, Y. Chen, Y. Liu, H. Wang, X. Zhang, Basic criteria for formation of growth twins in high stacking fault energy metals, Appl. Phys. Lett. 103 (2013) 181903 (1-5).

DOI: https://doi.org/10.1063/1.4826917

[63] K.Y. Yu, D. Bufford, C. Sun, Y. Liu, H. Wang, M.A. Kirk, M. Li, X. Zhang, Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals, Nature Communic. 4 (2013) 1377-1384.

DOI: https://doi.org/10.1038/ncomms2382

[64] K.Y. Yu, D. Bufford, F. Khatkhatay, H. Wang, M.A. Kirk, X. Zhang, In situ studies of irradiation-induced twin boundary migration in nanotwinned Ag, Scr. Mater. 69 (2013) 385-388.

DOI: https://doi.org/10.1016/j.scriptamat.2013.05.024

[65] E.M. Bringa, J.D. Monk, A. Caro, A. Misra, L. Zepeda-Ruiz, M. Duchaineau, F. Abraham, M. Nastasi, S.T. Picraux, Y.Q. Wang, D. Faekas, Are nanoporous materials radiation resistant? Nano Lett. 12 (2012) 3351-3355.

DOI: https://doi.org/10.1021/nl201383u

[66] R.A. Andrievski, Behavior of radiation defects in nanomaterials, Rev. Adv. Mater. Sci. 29 (2011) 54-67.

[67] B.D. Wirth, K. Nordlund, D.G. Whyte, D. Xu, Fusion materials modelling: challenges and opportunities, MRS Bull. 36 (2011) 216-221.

DOI: https://doi.org/10.1557/mrs.2011.37

[68] R.A. Andrievskii, Radiation stability of nanomaterials, Nanotech. Russ. 6 (2011) 357–369.

[69] X. -M. Bai, B.P. Uberuaga, The influence of grain boundaries on radiation-induced point defect production in materials: a review of atomistic studies, JOM 65 (2013) 360-373.

DOI: https://doi.org/10.1007/s11837-012-0544-5

[70] A. Meldrum, L.A. Boatner, R.C. Ewing, Nanocrystalline zirconia can be amorphized by ion irradiation, Phys. Rev. Lett. 88 (2002) 025503 (1-3).

DOI: https://doi.org/10.1103/physrevlett.88.025503

[71] K.E. Sickafus, H. Matzke, T. Hartman, K. Yasuda, P. Valdez, I. Chodak, M. Nastasi, R.A. Verral, Radiation damage effects in zirconia, J. Nucl. Mater. 274 (1999) 66-77.

DOI: https://doi.org/10.1016/s0022-3115(99)00041-0

[72] B. Johannessen, P. Kluth, D.J. Liewellyn, G.J. Foran, D.J. Cookson, M.C. Ridgway, Ion-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2, Phys. Rev. B76 (2007)184203(1-11).

DOI: https://doi.org/10.1103/physrevb.76.184203

[73] B. Johannessen, P. Kluth, D.J. Liewellyn, G.J. Foran, D.J. Cookson, M.C. Ridgway, Amorphization of embedded Cu nanocrystals by ion irradiation, Appl. Phys. Lett. 90(2007) 073119(1-3).

DOI: https://doi.org/10.1063/1.2644413

[74] P. Kluth, B. Johannessen, G.J. Foran, D.J. Cookson, S.M. Kluth, M.C. Ridgway, Disorder and cluster formation during ion irradiation of Au nanoparticles in SiO2, Phys. Rev. B 74 (2006) 014202 (1-8).

DOI: https://doi.org/10.1103/physrevb.74.014202

[75] M.C. Ridgway, G.M. Azevedo, R.G. Elliman, C.J. Glover, D.J. Llewellyn, R. Miller, W. Wesch, G.J. Foran, J. Hansen, A. Nylandsted-Larsen, Ion-irradiation-induced preferential amor-phization of Ge nanocrystals in silica, Phys. Rev. B 71 (2005).

DOI: https://doi.org/10.1103/physrevb.71.094107

[76] F. Djurabekova, M. Backman a, O.H. Pakarinen, K. Nordlund, L.L. Araujo, M.C. Ridgway, Amorphization of Ge nanocrystals embedded in amorphous silica under ion irradiation, Nucl. Instr. Meth. Phys. Res. B 267 (2009) 1235-1238.

DOI: https://doi.org/10.1103/physrevb.80.144109

[77] D.J. Sprouster, R. Giulian, L.L. Araujo, P. Kluth, B. Johannessen, K. Nordlund, N. Kirby, M.C. Ridgway, Ion irradiation induced amorphisation of cobalt nanoparticles, Phys. Rev. B 81 (2010) 155414 (1-8).

DOI: https://doi.org/10.1103/physrevb.81.155414

[78] A.V. Krasheninnikov, K. Nordlund, Ion and electron irradiation-induced effects in nanostruc-tured materials, J. Appl. Phys. 107 (2010) 071301 (1-12).

[79] Yu.G. Chukalkin, Amorphization of oxides by irradiation of fast neutrons, Phys. Solid State 55 (2013) 1601-1604.

[80] I.A. Ovid'ko, A.G. Sheinerman, Irradiation-induced amorphization process in nanocrystalline solids, Appl. Phys. A 81 (2005) 1083-1088.

DOI: https://doi.org/10.1007/s00339-004-2960-z

[81] T.D. Shen, Radiation tolerance in a nanostructure: is smaller better? Nucl. Instr. Meth. Phys. Res. A 266 (2008) 921-925.

[82] B.L. Oksengendler, N.N. Turaeva, S.E. Maximov, F. G Djurabekova, Peculiarities of radiation in-duced defect formation in nanocrystals embedded in a solid matrix, J. Exp. Theor. Phys. 138 (2010) 415-420.

DOI: https://doi.org/10.1134/s1063776110090104

[83] D. Kaomi, A.T. Motta, R.C. Birtcher, A thermal spike model of grain growth under irradiati-on, J, Appl. Phys. 104 (2008) 073525 (1-10).

DOI: https://doi.org/10.1063/1.2988142

[84] N. Nita, R. Schaeublin, M. Victoria, Impact of radiation on the microstructure of nanocrys-talline materials, J. Nucl. Mater. 329-333 (2004) 953-957.

[85] N. Nita, R. Schaeublin, M. Victoria, R.Z. Valiev, Effect of radiation on the microstructure and mechanical properties of nanostructured materials, Phil. Mag. 85 (2005) 723-735.

DOI: https://doi.org/10.1080/14786430412331319965

[86] L. Thilly, F, Lecountier, Nanomaterials and Nanochemistry: High Field Coils, Springer, New York, (2007).

[87] M. Yu. Gutkin, Mechanics of structural degradation in composite nanoparticles, Nanomater. Energy 2 (2013) 193-198.

[88] R.A. Andrievski, A.M. Glezer, Strength of nanostructures, Physics–Uspekhi 52 (2009) 315-334.

[89] Bulk Nanostructured Materials (Eds. M.J. Zehetbauer, Y.T. Zhu), Wiley, Weinheim, (2009).

[90] R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, Wiley, Weinheim, (2014).

[91] I.P. Semenova, G. Kh. Salimgareeva, V.V. Latysh, T. Lowe, R.Z. Valiev, Enhanced fatigue strength of commercially pure Ti processed by severe plastic deformation, Mater. Sci. Eng. A 503 (2009) 92-95.

DOI: https://doi.org/10.1016/j.msea.2008.07.075

[92] S.V. Dobatkin, V. F. Terent'ev, W. Skrotzki, O. V. Rybalchenko, M. N. Pankova, D. V. Prosvirnin, E. V. Zolotarev, Structure and fatigue properties of 08Kh18N10T steel after equal-channel angular pressing and heating, Russ. Metall. No 11 (2012).

DOI: https://doi.org/10.1134/s0036029512110043

[93] R.H. Li, Z.J. Zhang, P. Zhang, Z.F. Zhang, Improved fatigue properties of ultrafine-grained copper under cyclic torsion loading, Acta Mater. 61 (2013) 5857-5868.

DOI: https://doi.org/10.1016/j.actamat.2013.06.032

[94] I. Sabirov, M. Yu. Murashkin, R.Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development, Mater. Sci. Eng. A 560 (2013) 1-24.

DOI: https://doi.org/10.1016/j.msea.2012.09.020

[95] S.A. Nikulin, S.O. Rogachev, A. B. Rozhnov, M.V. Gorshenkov, V.I. Kopylov, S.V. Dobatkin, Resistance of alloy Zr – 2. 5% Nb with ultrafine-grain structure to stress corrosion cracking, Met. Sci. Heat Treatm. 54 (2012) 407-416.

DOI: https://doi.org/10.1007/s11041-012-9522-3

[96] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater. 61 (2013) 782-817.

DOI: https://doi.org/10.1016/j.actamat.2012.10.038

[97] P. Zhang, Z.J. Zhang, L.L. Li, Z.F. Zhang, Twin boundary: stronger or weaker interface to resist fatigue cracking? Scr. Mater. 66 (2012) 854-859.

DOI: https://doi.org/10.1016/j.scriptamat.2012.08.003

[98] P.B. Chowdhury, H. Sehitoglu, R.G. Rateick, H.J. Maier, Modeling fatigue crack resistance of nanocrystalline alloys, Acta Mater. 61 (2013) 2531-2547.

DOI: https://doi.org/10.1016/j.actamat.2013.01.030

[99] Z. Yin, C. Huang, B. Zou, H. Liu, H. Zhu, J. Wang, Dynamic behavior of Al2O3/TiC micro-nano-composite ceramic tool materials at ambient and high temperatures, Mater. Sci. Eng. A 593 (2014) 64-69.

DOI: https://doi.org/10.1016/j.msea.2013.11.035

[100] O.B. Naimark, Yu.V. Bayandin, V.A. Leontiev, I.A. Panteleev, O.A. Plekhov, Structural-sca-ling transitions and thermodynamic and kinetic effects in submicro-(nano-)crystalline bulk materi-als, Phys. Mesomech., 12 (2009) 239-248.

DOI: https://doi.org/10.1016/j.physme.2009.12.005

[101] O.B. Naimark, O.A. Plekhov, V.I. Betekhtin, A.G. Kadomtsev, M.V. Narykova, The defect accumulation kinetics and duality of Wellers' curve in gigacycle fatigue of metals, Techn. Phys. 59 (2014) 398-401.

DOI: https://doi.org/10.1134/s1063784214030190

[102] R.A. Andrievski, Nanomatwrials based on carbides, nitrides and borides, Russ. Chem. Rev. 75 (2005) 1061-1072.

DOI: https://doi.org/10.1070/rc2005v074n12abeh001202

[103] H. Sumiya, T. Irifune, Hardness and deformation microstructures of nano-polycrystalline diamond synthesized from various carbons under high pressure and high temperature, J. Mater. Res. 22 (2007) 2345-2351.

DOI: https://doi.org/10.1557/jmr.2007.0295

[104] Y.M. Shul'ga, D.V. Matyushenko, A.A. Golyshev, D.V. Shakhrai, A.M. Molodets, E.N. Ka-bachkov, E.N. Kurkin, I.A. Domashnev, Phase transformations in nanostructural anatase TiO2 under shock compression conditions studied by Raman spectroscopy, Techn. Phys. Lett. 36 (2010).

DOI: https://doi.org/10.1134/s1063785010090191

[105] A.M. Molodets, A.A. Golyshev, Y.M. Shul'ga, Polymorphic transformations in nanostruc-tured anatase (TiO2) under high-pressure shock compression, Techn. Phys. 58 (2013) 1029-1033.

DOI: https://doi.org/10.1134/s1063784213070141

[106] Y. Kojima, H. Ohfuji, Structure and stability of carbon nitride under high pressure and high temperature up to 125 GPa and 3000 K, Diam. Rel. Mater, 39 (2013) 1-7.

[107] Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, Y. Tian, Nanotwinned diamond with unprecedented hardness and stability, Nature 510 (2014) 250-253.

DOI: https://doi.org/10.1038/nature13381

[108] Y. Tian, B. Xu, D. Yu, Y. Ma, Y. Wang, Y. Jiang, W. Hu, C. Tang, Y. Gao, K. Luo, Z. Zhao, L. -M. Wang, B. Wen, J. He, Z. Liu, Ultrahard nanotwinned cubic boron nitride, Nature 493 (2013) 385-388.

DOI: https://doi.org/10.1038/nature11728

[109] F. Yuan, X. Wu, Shock response of nanotwinned copper from large-scale molecular dynamics simulations, Phya. Rev. B 86 (2012) 134108 (1-10).

DOI: https://doi.org/10.1103/physrevb.86.134108

[110] I.J. Beyerlein, J.R. Mayeur, S. Zheng, N.A. Mara, J. Wang, A. Misra, Emergence of stable interfaces under extreme plastic deformation, PNAS 111 (2014) 4386-4390.

DOI: https://doi.org/10.1073/pnas.1319436111

[111] B.V. Mahesh, B.K. Singh Raman, C.C. Koch, Bimodal grain size distribution: an effective approach for improving the mechanical and corrosion properties of Fr-Cr-Ni alloys, J. Mater. Sci. 47 (2012)7735-7743.

DOI: https://doi.org/10.1007/s10853-012-6686-6

[112] B.V. Mahesh, B.K. Singh Raman, R.O. Scattergood, C.C. Koch, Fe-Ni-Cr-Zr alloys with bi-modal grain size distribution: synthesis, mechanical properties and oxidation resistance, Mater. Sci. Eng. A 574 (2013) 235-242.

DOI: https://doi.org/10.1016/j.msea.2016.03.003

[113] A.M. Rashidi, Isothermal oxidation kinetics of nanocrystalline and coarse grained nickel: experimental results and theoretical approach, Surf. Coat. Technol. 205 (2011) 4117-4121.

DOI: https://doi.org/10.1016/j.surfcoat.2011.02.006

[114] R.K. Gupta, R.K. Singh Raman, C.C. Koch, Fabrication and oxidation resistance of nanocrystalline Fe10Cr alloy, J. Mater. Sci. 45 (2010)4884-4888.

DOI: https://doi.org/10.1007/s10853-010-4665-3

[115] X. Peng, Nanoscale assembly of high-temperature oxidation-resistant nanocomposites, Nano-scale 2 (2010) 262-268.

[116] X.Y. Zhang, M.H. Shi, C. Li, , N.E. Liu, Y.M. Wei, The influence of grain size on the corrosion resistance of nanocrystalline zirconium metal, Mater, Sci. Eng. A 448 (2007) 259-263.

[117] R.K. Gupta, N. Birbilis, J. Zhang, Oxidation resistance of nanocrystalline alloys, in: M. Shih (Ed. ), Corrosion Resistance, InTec, Vienna, 2012, pp.213-238.

[118] Y. Zhao, I.C. Cheng, M.E. Kassner, A.M. Hodge, The effect of nanotwins on the corrosion behavior of copper, Acta Mater. 67 (2014) 181-188.

[119] B. Schuster, F. Fujara, B. Merk, R. Neumann, T. Seidi, C. Trautmann, Response behavior of ZrO2 under swift heavy ion irradiation with and without external pressure, Nucl. Instr. Meth. Phys. Res. B 277 (2012) 45-52.

DOI: https://doi.org/10.1016/j.nimb.2011.12.060

[120] G.S. Fox-Rabinovich, J.L. Endrino, M.H. Aguirre, B.D. Beake, S.C. Veldhuis, A.I. Kovalev, I.S. Gershman, K. Yamamoto, Y. Losset, D.L. Wainstein, A. Rashkovskiy, Mechanism of adaptability for the nano-structured TiAlCrSiYN-based hard physical vapor deposition coatings under extreme frictional conditions, J. Appl. Phys. 111 (2012).

DOI: https://doi.org/10.1063/1.3693032

[121] H. Gleiter, J. Weissesmüller, O. Wollersheim, R. Würschum, Nanocrystalline materials: a way to solids with tunable electron structure and properties? Acta Mater. 48 (2001) 737-745.

DOI: https://doi.org/10.1016/s1359-6454(00)00221-4

[122] H. Gleiter, Our thoughts are ours, their ends none of our own: are there ways to synthesize materials beyond the limitations of today? Acta Mater. 56 (2008) 5875-5893.

DOI: https://doi.org/10.1016/j.actamat.2008.08.028

[123] R.A. Andrievski, Metallic nano/microglasses: new approaches in nanostructured materials science, Physics–Uspekhi 56 (2013) 261-268.

DOI: https://doi.org/10.3367/ufne.0183.201303c.0277

[124] H. Gleiter, Th. Schimmel, H. Hahn, Nanostructured solids – from nano-glasses to quantum transistors, Nano Today 9 (2014) 17-66.

DOI: https://doi.org/10.1016/j.nantod.2014.02.008