The Role of Interfaces in Nanomaterials Behavior at Extremes

Article Preview

Abstract:

The main statements of nanomaterials concept are shortly considered. Current developments in the metallic nanomaterials stability under thermal, irradiation, deformation and corrosion actions are generalized and discussed in detail. Special attention is paid to possible prediction of thermal grain growth characteristics using the regular solution approximation. The key role of nanotwinned interfaces in the stability increase at extremes is described and pointed out. The attention is paid to unresolved and insufficiently studied problems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-170

Citation:

Online since:

July 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Gleiter, Materials with ultrafine grain size, in: N. Hansen, T. Leffers, H. Lilholt (Eds. ), Deformation of Polycrystals, Proc. of 2nd RISO Symposium on Metallurgy and Materials Science, Roskilde: RISO Nat. Lab., 1981. pp.15-21.

Google Scholar

[2] R. Birringer, H. Gleiter, H. -P. Klein, P. Marquard, Nanocrystalline materials: an approach to a novel solid structure with gas-like disorder, Phys. Lett. 102 (1984) 365-369.

DOI: 10.1016/0375-9601(84)90300-1

Google Scholar

[3] R. Birringer, U. Herr, H. Gleiter, Nanocrystalline materials – a first report, Trans. Jap. Inst. Met. Suppl. 27 (1986) 43-52.

Google Scholar

[4] G. Palumbo, U. Erb, K. Aust, Triple line disclination effect on the mechanical behavior of materials, Scr. Met. Mater. 24 (1990) 1347-1350.

Google Scholar

[5] U. Erb, Size effects in electroformed nanomaterials, Key Eng. Mater. 444 (2010) 163-188.

DOI: 10.4028/www.scientific.net/kem.444.163

Google Scholar

[6] G. Gleiter, Nanostructured materials: state of the art and perspectives, Z. Metallkd. 86 (1995) 78-83.

Google Scholar

[7] V.V. Pokropivny, V.V. Skorokhod, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science, Mater. Sci. Eng. C 27 (2007) 990-993.

DOI: 10.1016/j.msec.2006.09.023

Google Scholar

[8] V.E. Fortov, Extreme States of Matter, FIZMATLIT, Moscow, 2010 (in Russian).

Google Scholar

[9] A. Misra, L. Thilly, Structural metals at extremes, MRS Bull. 35 (2010) 965-972.

Google Scholar

[10] V.E. Fortov, V.B. Mintsev, Extreme states of matter on the earth and in the cosmos: Is there any chemistry beyond the megabar? Russ Chem. Rev. 82 (2013) 597-615.

DOI: 10.1070/rc2013v082n07abeh004394

Google Scholar

[11] N. Bourne, Materials in Mechanical Extremes – Fundamentals and Applications, Cambridge University Press, New York, (2013).

Google Scholar

[12] H. Gleiter, Nanocrystalline materials, Progress Mater. Sci. 33 (1989) 223-315.

Google Scholar

[13] R.A. Andrievski, Stability of nanostructured materials, J. Mater. Sci. 38 (2003) 1367-1375.

Google Scholar

[14] L. Hultman, C. Mitterer, Thermal stability of advanced nanostructured wear resistant coatings, in: A. Cavaleiro, J.T. De Hosson (Eds. ), Nanostructured Coatings, Springer, New York, 2006, pp.609-656.

DOI: 10.1007/978-0-387-48756-4_11

Google Scholar

[15] C.C. Koch, I.A. Ovid'ko, S. Seal, S. Veprek, Structural Nanocrystalline Materials: Fundamen-tals and Applications, Cambridge University Press, Cambridge, (2007).

Google Scholar

[16] R.A. Andrievski, Effect of irradiation on properties of nanomaterials, Phys. Met. Metallogr. 110 (2010) 229-240.

Google Scholar

[17] M.J. Demkowicz, P. Bellon, B.D. Wirth, Atomic-scale design of radiation-tolerant nanocom-posites, MRS Bull. 35 (2010) 992-998.

DOI: 10.1557/mrs2010.704

Google Scholar

[18] R.A. Andrievskii, The role of nanoscale effects in the interaction between nanostructured ma-terials and environments, Prot. Met. Phys. Chem. Surf. 49 (2013) 528-540.

DOI: 10.1134/s207020511305002x

Google Scholar

[19] R.A. Andrievski, Review of thermal stability of nanomaterials, J. Mater. Sci. 49 (2014) 1449-1460.

Google Scholar

[20] R.A. Andrievski, Thermal and radiation stability of nanomaterials, in: Advanced Materials in Extreme Environments, MRS Proceedings, V. 1645, 2014; MRSF13-1645-ZZ03-06. R1; DOI: 10. 1557/opl. 2014. 277.

DOI: 10.1557/opl.2014.277

Google Scholar

[21] M. Upmanyu, D.J. Srolovitz, A.E. Lobkovsky, J.A. Warren, W.C. Carter, Simultaneous grain boundary migration and grain rotation, Acta Mater. 54 (2006) 1707–1715.

DOI: 10.1016/j.actamat.2005.11.036

Google Scholar

[22] N. Bernstein, The influence of geometry on grain boundary motion and rotation, Acta Mater. 56 (2008) 1106–1113.

DOI: 10.1016/j.actamat.2007.11.002

Google Scholar

[23] R. Chaim, Groan coalescence by grain rotation in nanoceramics, Scr. Mater. 66 (2012) 269–271.

Google Scholar

[24] I. Zizak, N. Darowski, S. Klaumünzer, G. Schumacher, J.W. Gerlach, Grain rotation in nano-crystalline layers under influence of swift heavy ions. Nucl. Instr. Meth. Phys. Res. B 267 (2009) 944–948.

DOI: 10.1016/j.nimb.2009.02.018

Google Scholar

[25] V.Y. Novikov, On grain growth in the presence of mobile particles, Acta Mater. 58 (2010) 3326–3331.

DOI: 10.1016/j.actamat.2010.02.006

Google Scholar

[26] V.Y. Novikov, Microstructure evolution during grain growth in materials with disperse particles, Mater. Lett. 68 (2012) 413–415.

DOI: 10.1016/j.matlet.2011.10.101

Google Scholar

[27] V.Y. Novikov, Impact of grain boundary junctions on grain growth in polycrystals with diffe-rent grain sizes, Mater. Lett. 62 (2008) 2067–(2069).

DOI: 10.1016/j.matlet.2007.11.017

Google Scholar

[28] G. Gottstein, L.S. Shvindlerman, A novel concept to determine the mobility of grain boundary quadruple junctions, Scr. Mater. 52 (2005) 863–866.

DOI: 10.1016/j.scriptamat.2005.01.008

Google Scholar

[29] B. Zhao, G. Gottstein, L.S. Shvindlerman, Triple junction effects in solids, Acta Mater. 59 (2011) 3510–3518.

DOI: 10.1016/j.actamat.2011.02.024

Google Scholar

[30] L. Klinger, E. Rabkin, L.S. Shvindlerman, G. Gottstein, Grain growth in porous two-dimen-sional nanocristalline materials, J. Mater. Sci. 43 (2008) 5068-5075.

DOI: 10.1007/s10853-008-2678-y

Google Scholar

[31] J.R. Trelewicz, C.A. Schuh, Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys, Phys. Rev. B 79 (2009) 094112 (1-13).

DOI: 10.1103/physrevb.79.094112

Google Scholar

[32] T. Chookajorn, H.A. Murdoch, C.A. Schuh, Design of stable nanocrystalline alloys, Science 337 (2012) 951–954.

DOI: 10.1126/science.1224737

Google Scholar

[33] H.A. Murdoch, C.A. Schuh, Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 61 (2013) 2121–2132.

DOI: 10.1016/j.actamat.2012.12.033

Google Scholar

[34] M. Saber, H. Kotan, C.C. Koch, R.O. Scattergood, Thermodynamic stabilization of nanocrys-talline binary alloys, J. Appl. Phys. 113 (2013) 063515 (1-10).

DOI: 10.1063/1.4791704

Google Scholar

[35] K.A. Darling, M.A. Tschopp, B.K. VanLeeuwen, M.A. Atwater, Z.K. Liu, Mitigating grain growth in binary nanocrystalline alloys through solute selection based on thermodynamic stability maps, Comp. Mater. Sci. 84 (2014) 255-266.

DOI: 10.1016/j.commatsci.2013.10.018

Google Scholar

[36] M.A. Atwater, R.O. Scattergood, C.C. Koch, The stabilization of nanocrystalline copper by zirconium, Mater. Sci. Eng. A 559 (2013) 250-256.

DOI: 10.1016/j.msea.2012.08.092

Google Scholar

[37] С.C. Koch, R.O. Scattergood, M. Saber, H. Kotan, High temperature stabilization of nanocrys-talline grain size: thermodynamic versus kinetic strategies, J. Mater. Res. 28 (2013) 1785-1791.

DOI: 10.1557/jmr.2012.429

Google Scholar

[38] O. Anderoglu, A. Misra, H. Wang, X. Zhang, Thermal stability of sputtered Cu films with nanoscale growth twins, J. Appl. Phys. 103 (2008) 094322 (1-6).

DOI: 10.1063/1.2913322

Google Scholar

[39] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science 304 (2004) 422–426.

DOI: 10.1126/science.1092905

Google Scholar

[40] X.C. Liu, H.W. Zhang, K. Lu, Strain-induced ultrahard and ultrastable nanolaminated structure in nickel, Science 342 (2013) 337-340.

DOI: 10.1126/science.1242578

Google Scholar

[41] S. Zheng, I.J. Beyerlein, J.S. Carpenter, K. Kang, J. Wang, W. Han, N.A. Mara, High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces, Nature Commun. 4 (2013) 1696-1703.

DOI: 10.1038/ncomms2651

Google Scholar

[42] M. Ames, J. Markmann, R. Karos, A. Michels, A. Tschöpe, R. Birringer, Unraveling the nature of room temperature grain growth in nanocrystalline materials, Acta Mater. 56 (2008) 4255-4266.

DOI: 10.1016/j.actamat.2008.04.051

Google Scholar

[43] G. Gottstein, L.S. Shvindlerman, B. Zhao, Thermodynamics and kinetics of grain boundary triple junctions in metals: recent developments, Scr. Mater. 62 (2010) 914-917.

DOI: 10.1016/j.scriptamat.2010.03.017

Google Scholar

[44] V.Y. Novikov, Origin of microstructure instability in nanocrystalline materials, Mater. Lett. 116 (2014) 268-270.

Google Scholar

[45] M. Rose, A.G. Balough, H. Hahn, Instability of irradiation induced defects in nanostructured materials, Nucl. Instr. Meth. Phys. Res. B 127-128 (1997) 119-122.

Google Scholar

[46] T.D. Shen, Sh. Feng, , M. Tang, J.A. Valdez, Y. Wang, K.E. Sicafus, Enhanced radiation tolerance in nanocrystalline MgGa2O4, Appl. Phys. Lett. 90 (2007) 263115 (1-3).

DOI: 10.1063/1.2753098

Google Scholar

[47] A.R. Kilmametov, D.V. Gunderov, R.Z. Valiev, A.G. Balogh, H. Hahn, Enhanced ion irra-diation resistance of bulk nanocrystalline TiNi alloys, Scr. Mater. 59 (2008) 1027-1030.

DOI: 10.1016/j.scriptamat.2008.06.051

Google Scholar

[48] Y. Leconte, I. Monnet, M. Levalois, M. Morales, X. Portier, L. Thome, N. Herlin-Boime, C. Reynaud, Comparison study of structural damage under irradiation in SiC nanostructured and conventional ceramics, in: Mater. Res. Soc. Symp. Proc. V. 981 MRS, Warrendale, 2007, p.1107.

DOI: 10.1557/proc-981-0981-jj07-11

Google Scholar

[49] H. Kurushita, S. Kobayashi, K. Nakai, T. Ogawa, A. Hasegawa, K. Abe, H. Arakawa, S. Mat-suo, T. Takida, K. Takebe, M. Kawai, N. Yoshida, Development of ultra-fine grained W-(0. 25-0. 8) wt % TiC and superior resistance to neutron and 3 MeV He-ion, J. Nucl. Mater. 377 (2008).

DOI: 10.1016/j.jnucmat.2008.02.055

Google Scholar

[50] B. Radiguet, A. Etienne, P. Pareige, X. Sauvage, R. Valiev, Irradiation behavior of nano-structured 316 austenitic stainless steel, J. Mater. Sci. 43 (2008) 7338-7343.

DOI: 10.1007/s10853-008-2875-8

Google Scholar

[51] D.A. McClintock, D.T. Hoelzer, M.A. Sokolov, R.K. Nanstad, Mechanical properties of ir-radiated nanostructured ferritic alloy 14YWT, J. Nucl. Mater. 386-388 (2009) 307-311.

DOI: 10.1016/j.jnucmat.2008.12.104

Google Scholar

[52] A. Alsabbagh, R.Z. Valiev, K.L. Murty, Influence of grain size on radiation effects in a low carbon steel, J. Nucl. Mater. 443 (2013) 302-310.

DOI: 10.1016/j.jnucmat.2013.07.049

Google Scholar

[53] E.G. Fu, A. Misra, H. Wang, X. Zhang, Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers, J. Nucl. Mater. 407 (2010) 178-188.

DOI: 10.1016/j.jnucmat.2010.10.011

Google Scholar

[54] A. Misra, M.J. Demkowicz, X. Zhang, R.G. Hoagland, The radiation damage tolerance of ultrahigh strength nanolayered composites, JOM 52 (2007) 62-65.

DOI: 10.1007/s11837-007-0120-6

Google Scholar

[55] X. Zhang, N. Li, O. Anderoglu, H. Wang, , J.G. Swadener, H. Hochbauer. A. Misra, R.G. Hoagland, Nanostructured Cu/Nb multilayer subjected to helium ion-irradiation, Nucl. Instr. Meth. Phys. Res. B 261 (2007) 1129-1132.

DOI: 10.1016/j.nimb.2007.03.098

Google Scholar

[56] Y. Gao, T. Yang, J. Xue, S. Yan, S. Zhou, Y. Wang, D.T.K. Kwok, P.K. Chu, Y. Zhang, Radiation tolerance of Cu/W multilayered nanocomposites, J. Nucl. Mater. 413 (2011) 11-15.

DOI: 10.1016/j.jnucmat.2011.03.030

Google Scholar

[57] H. Wang, Y. Gao, E. Fu, T. Yang, J. Xue, S. Yan, P.K. Chu, Y. Wang, Irradiation effects on multilaye-red W/ZrO2 film under 4 MeV Au ions, J. Nucl. Mater., (2014), accepted for publication.

Google Scholar

[58] C.M. Parish, R.M. White, J.M. LeBeau, M.K. Miller, Response of nanostructured ferritic alloys to high-dose heavy ion irradiation, J. Nucl. Mater. 445 (2014) 251-260.

DOI: 10.1016/j.jnucmat.2013.11.002

Google Scholar

[59] M. Efe, O. El-Atwani, Y. Guo, D.R. Klenosky, Microstructure refinement of tungsten by surface deformation for irradiation damage resistance, Scr. Mater. 70 (2014) 31-34.

DOI: 10.1016/j.scriptamat.2013.08.013

Google Scholar

[60] Y. Zhang, M. Ishimaru, T. Varga, T. Oda, C. Hardiman, H. Xue, Y. Katoh, S. Shannon, W.J. Weber, Nanoscale engineering of radiation tolerant silicon carbide, Phys. Chem. Chem. Phys. 14 (2012) 13429-13436.

DOI: 10.1039/c2cp42342a

Google Scholar

[61] M. Ishimaru, Y. Zhang, S. Shannon, W.J. Weber, Origin of radiation tolerance in 3C-SiC with nanolayered planar defects, Appl. Phys. Lett. 103 (2013) 033104 (1-4).

DOI: 10.1063/1.4813593

Google Scholar

[62] K.Y. Yu, D. Bufford, Y. Chen, Y. Liu, H. Wang, X. Zhang, Basic criteria for formation of growth twins in high stacking fault energy metals, Appl. Phys. Lett. 103 (2013) 181903 (1-5).

DOI: 10.1063/1.4826917

Google Scholar

[63] K.Y. Yu, D. Bufford, C. Sun, Y. Liu, H. Wang, M.A. Kirk, M. Li, X. Zhang, Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals, Nature Communic. 4 (2013) 1377-1384.

DOI: 10.1038/ncomms2382

Google Scholar

[64] K.Y. Yu, D. Bufford, F. Khatkhatay, H. Wang, M.A. Kirk, X. Zhang, In situ studies of irradiation-induced twin boundary migration in nanotwinned Ag, Scr. Mater. 69 (2013) 385-388.

DOI: 10.1016/j.scriptamat.2013.05.024

Google Scholar

[65] E.M. Bringa, J.D. Monk, A. Caro, A. Misra, L. Zepeda-Ruiz, M. Duchaineau, F. Abraham, M. Nastasi, S.T. Picraux, Y.Q. Wang, D. Faekas, Are nanoporous materials radiation resistant? Nano Lett. 12 (2012) 3351-3355.

DOI: 10.1021/nl201383u

Google Scholar

[66] R.A. Andrievski, Behavior of radiation defects in nanomaterials, Rev. Adv. Mater. Sci. 29 (2011) 54-67.

Google Scholar

[67] B.D. Wirth, K. Nordlund, D.G. Whyte, D. Xu, Fusion materials modelling: challenges and opportunities, MRS Bull. 36 (2011) 216-221.

DOI: 10.1557/mrs.2011.37

Google Scholar

[68] R.A. Andrievskii, Radiation stability of nanomaterials, Nanotech. Russ. 6 (2011) 357–369.

Google Scholar

[69] X. -M. Bai, B.P. Uberuaga, The influence of grain boundaries on radiation-induced point defect production in materials: a review of atomistic studies, JOM 65 (2013) 360-373.

DOI: 10.1007/s11837-012-0544-5

Google Scholar

[70] A. Meldrum, L.A. Boatner, R.C. Ewing, Nanocrystalline zirconia can be amorphized by ion irradiation, Phys. Rev. Lett. 88 (2002) 025503 (1-3).

DOI: 10.1103/physrevlett.88.025503

Google Scholar

[71] K.E. Sickafus, H. Matzke, T. Hartman, K. Yasuda, P. Valdez, I. Chodak, M. Nastasi, R.A. Verral, Radiation damage effects in zirconia, J. Nucl. Mater. 274 (1999) 66-77.

DOI: 10.1016/s0022-3115(99)00041-0

Google Scholar

[72] B. Johannessen, P. Kluth, D.J. Liewellyn, G.J. Foran, D.J. Cookson, M.C. Ridgway, Ion-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2, Phys. Rev. B76 (2007)184203(1-11).

DOI: 10.1063/1.2644413

Google Scholar

[73] B. Johannessen, P. Kluth, D.J. Liewellyn, G.J. Foran, D.J. Cookson, M.C. Ridgway, Amorphization of embedded Cu nanocrystals by ion irradiation, Appl. Phys. Lett. 90(2007) 073119(1-3).

DOI: 10.1063/1.2644413

Google Scholar

[74] P. Kluth, B. Johannessen, G.J. Foran, D.J. Cookson, S.M. Kluth, M.C. Ridgway, Disorder and cluster formation during ion irradiation of Au nanoparticles in SiO2, Phys. Rev. B 74 (2006) 014202 (1-8).

DOI: 10.1103/physrevb.74.014202

Google Scholar

[75] M.C. Ridgway, G.M. Azevedo, R.G. Elliman, C.J. Glover, D.J. Llewellyn, R. Miller, W. Wesch, G.J. Foran, J. Hansen, A. Nylandsted-Larsen, Ion-irradiation-induced preferential amor-phization of Ge nanocrystals in silica, Phys. Rev. B 71 (2005).

DOI: 10.1103/physrevb.71.094107

Google Scholar

[76] F. Djurabekova, M. Backman a, O.H. Pakarinen, K. Nordlund, L.L. Araujo, M.C. Ridgway, Amorphization of Ge nanocrystals embedded in amorphous silica under ion irradiation, Nucl. Instr. Meth. Phys. Res. B 267 (2009) 1235-1238.

DOI: 10.1016/j.nimb.2009.01.022

Google Scholar

[77] D.J. Sprouster, R. Giulian, L.L. Araujo, P. Kluth, B. Johannessen, K. Nordlund, N. Kirby, M.C. Ridgway, Ion irradiation induced amorphisation of cobalt nanoparticles, Phys. Rev. B 81 (2010) 155414 (1-8).

DOI: 10.1103/physrevb.81.155414

Google Scholar

[78] A.V. Krasheninnikov, K. Nordlund, Ion and electron irradiation-induced effects in nanostruc-tured materials, J. Appl. Phys. 107 (2010) 071301 (1-12).

Google Scholar

[79] Yu.G. Chukalkin, Amorphization of oxides by irradiation of fast neutrons, Phys. Solid State 55 (2013) 1601-1604.

DOI: 10.1134/s1063783413080076

Google Scholar

[80] I.A. Ovid'ko, A.G. Sheinerman, Irradiation-induced amorphization process in nanocrystalline solids, Appl. Phys. A 81 (2005) 1083-1088.

DOI: 10.1007/s00339-004-2960-z

Google Scholar

[81] T.D. Shen, Radiation tolerance in a nanostructure: is smaller better? Nucl. Instr. Meth. Phys. Res. A 266 (2008) 921-925.

Google Scholar

[82] B.L. Oksengendler, N.N. Turaeva, S.E. Maximov, F. G Djurabekova, Peculiarities of radiation in-duced defect formation in nanocrystals embedded in a solid matrix, J. Exp. Theor. Phys. 138 (2010) 415-420.

DOI: 10.1134/s1063776110090104

Google Scholar

[83] D. Kaomi, A.T. Motta, R.C. Birtcher, A thermal spike model of grain growth under irradiati-on, J, Appl. Phys. 104 (2008) 073525 (1-10).

Google Scholar

[84] N. Nita, R. Schaeublin, M. Victoria, Impact of radiation on the microstructure of nanocrys-talline materials, J. Nucl. Mater. 329-333 (2004) 953-957.

DOI: 10.1016/j.jnucmat.2004.04.058

Google Scholar

[85] N. Nita, R. Schaeublin, M. Victoria, R.Z. Valiev, Effect of radiation on the microstructure and mechanical properties of nanostructured materials, Phil. Mag. 85 (2005) 723-735.

DOI: 10.1080/14786430412331319965

Google Scholar

[86] L. Thilly, F, Lecountier, Nanomaterials and Nanochemistry: High Field Coils, Springer, New York, (2007).

Google Scholar

[87] M. Yu. Gutkin, Mechanics of structural degradation in composite nanoparticles, Nanomater. Energy 2 (2013) 193-198.

Google Scholar

[88] R.A. Andrievski, A.M. Glezer, Strength of nanostructures, Physics–Uspekhi 52 (2009) 315-334.

DOI: 10.3367/ufne.0179.200904a.0337

Google Scholar

[89] Bulk Nanostructured Materials (Eds. M.J. Zehetbauer, Y.T. Zhu), Wiley, Weinheim, (2009).

Google Scholar

[90] R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, Wiley, Weinheim, (2014).

Google Scholar

[91] I.P. Semenova, G. Kh. Salimgareeva, V.V. Latysh, T. Lowe, R.Z. Valiev, Enhanced fatigue strength of commercially pure Ti processed by severe plastic deformation, Mater. Sci. Eng. A 503 (2009) 92-95.

DOI: 10.1016/j.msea.2008.07.075

Google Scholar

[92] S.V. Dobatkin, V. F. Terent'ev, W. Skrotzki, O. V. Rybalchenko, M. N. Pankova, D. V. Prosvirnin, E. V. Zolotarev, Structure and fatigue properties of 08Kh18N10T steel after equal-channel angular pressing and heating, Russ. Metall. No 11 (2012).

DOI: 10.1134/s0036029512110043

Google Scholar

[93] R.H. Li, Z.J. Zhang, P. Zhang, Z.F. Zhang, Improved fatigue properties of ultrafine-grained copper under cyclic torsion loading, Acta Mater. 61 (2013) 5857-5868.

DOI: 10.1016/j.actamat.2013.06.032

Google Scholar

[94] I. Sabirov, M. Yu. Murashkin, R.Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development, Mater. Sci. Eng. A 560 (2013) 1-24.

DOI: 10.1016/j.msea.2012.09.020

Google Scholar

[95] S.A. Nikulin, S.O. Rogachev, A. B. Rozhnov, M.V. Gorshenkov, V.I. Kopylov, S.V. Dobatkin, Resistance of alloy Zr – 2. 5% Nb with ultrafine-grain structure to stress corrosion cracking, Met. Sci. Heat Treatm. 54 (2012) 407-416.

DOI: 10.1007/s11041-012-9522-3

Google Scholar

[96] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater. 61 (2013) 782-817.

DOI: 10.1016/j.actamat.2012.10.038

Google Scholar

[97] P. Zhang, Z.J. Zhang, L.L. Li, Z.F. Zhang, Twin boundary: stronger or weaker interface to resist fatigue cracking? Scr. Mater. 66 (2012) 854-859.

DOI: 10.1016/j.scriptamat.2012.01.028

Google Scholar

[98] P.B. Chowdhury, H. Sehitoglu, R.G. Rateick, H.J. Maier, Modeling fatigue crack resistance of nanocrystalline alloys, Acta Mater. 61 (2013) 2531-2547.

DOI: 10.1016/j.actamat.2013.01.030

Google Scholar

[99] Z. Yin, C. Huang, B. Zou, H. Liu, H. Zhu, J. Wang, Dynamic behavior of Al2O3/TiC micro-nano-composite ceramic tool materials at ambient and high temperatures, Mater. Sci. Eng. A 593 (2014) 64-69.

DOI: 10.1016/j.msea.2013.11.035

Google Scholar

[100] O.B. Naimark, Yu.V. Bayandin, V.A. Leontiev, I.A. Panteleev, O.A. Plekhov, Structural-sca-ling transitions and thermodynamic and kinetic effects in submicro-(nano-)crystalline bulk materi-als, Phys. Mesomech., 12 (2009) 239-248.

DOI: 10.1016/j.physme.2009.12.005

Google Scholar

[101] O.B. Naimark, O.A. Plekhov, V.I. Betekhtin, A.G. Kadomtsev, M.V. Narykova, The defect accumulation kinetics and duality of Wellers' curve in gigacycle fatigue of metals, Techn. Phys. 59 (2014) 398-401.

DOI: 10.1134/s1063784214030190

Google Scholar

[102] R.A. Andrievski, Nanomatwrials based on carbides, nitrides and borides, Russ. Chem. Rev. 75 (2005) 1061-1072.

DOI: 10.1070/rc2005v074n12abeh001202

Google Scholar

[103] H. Sumiya, T. Irifune, Hardness and deformation microstructures of nano-polycrystalline diamond synthesized from various carbons under high pressure and high temperature, J. Mater. Res. 22 (2007) 2345-2351.

DOI: 10.1557/jmr.2007.0295

Google Scholar

[104] Y.M. Shul'ga, D.V. Matyushenko, A.A. Golyshev, D.V. Shakhrai, A.M. Molodets, E.N. Ka-bachkov, E.N. Kurkin, I.A. Domashnev, Phase transformations in nanostructural anatase TiO2 under shock compression conditions studied by Raman spectroscopy, Techn. Phys. Lett. 36 (2010).

DOI: 10.1134/s1063785010090191

Google Scholar

[105] A.M. Molodets, A.A. Golyshev, Y.M. Shul'ga, Polymorphic transformations in nanostruc-tured anatase (TiO2) under high-pressure shock compression, Techn. Phys. 58 (2013) 1029-1033.

DOI: 10.1134/s1063784213070141

Google Scholar

[106] Y. Kojima, H. Ohfuji, Structure and stability of carbon nitride under high pressure and high temperature up to 125 GPa and 3000 K, Diam. Rel. Mater, 39 (2013) 1-7.

DOI: 10.1016/j.diamond.2013.07.006

Google Scholar

[107] Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, Y. Tian, Nanotwinned diamond with unprecedented hardness and stability, Nature 510 (2014) 250-253.

DOI: 10.1038/nature13381

Google Scholar

[108] Y. Tian, B. Xu, D. Yu, Y. Ma, Y. Wang, Y. Jiang, W. Hu, C. Tang, Y. Gao, K. Luo, Z. Zhao, L. -M. Wang, B. Wen, J. He, Z. Liu, Ultrahard nanotwinned cubic boron nitride, Nature 493 (2013) 385-388.

DOI: 10.1038/nature11728

Google Scholar

[109] F. Yuan, X. Wu, Shock response of nanotwinned copper from large-scale molecular dynamics simulations, Phya. Rev. B 86 (2012) 134108 (1-10).

DOI: 10.1103/physrevb.86.134108

Google Scholar

[110] I.J. Beyerlein, J.R. Mayeur, S. Zheng, N.A. Mara, J. Wang, A. Misra, Emergence of stable interfaces under extreme plastic deformation, PNAS 111 (2014) 4386-4390.

DOI: 10.1073/pnas.1319436111

Google Scholar

[111] B.V. Mahesh, B.K. Singh Raman, C.C. Koch, Bimodal grain size distribution: an effective approach for improving the mechanical and corrosion properties of Fr-Cr-Ni alloys, J. Mater. Sci. 47 (2012)7735-7743.

DOI: 10.1007/s10853-012-6686-6

Google Scholar

[112] B.V. Mahesh, B.K. Singh Raman, R.O. Scattergood, C.C. Koch, Fe-Ni-Cr-Zr alloys with bi-modal grain size distribution: synthesis, mechanical properties and oxidation resistance, Mater. Sci. Eng. A 574 (2013) 235-242.

DOI: 10.1016/j.msea.2013.02.049

Google Scholar

[113] A.M. Rashidi, Isothermal oxidation kinetics of nanocrystalline and coarse grained nickel: experimental results and theoretical approach, Surf. Coat. Technol. 205 (2011) 4117-4121.

DOI: 10.1016/j.surfcoat.2011.02.006

Google Scholar

[114] R.K. Gupta, R.K. Singh Raman, C.C. Koch, Fabrication and oxidation resistance of nanocrystalline Fe10Cr alloy, J. Mater. Sci. 45 (2010)4884-4888.

DOI: 10.1007/s10853-010-4665-3

Google Scholar

[115] X. Peng, Nanoscale assembly of high-temperature oxidation-resistant nanocomposites, Nano-scale 2 (2010) 262-268.

Google Scholar

[116] X.Y. Zhang, M.H. Shi, C. Li, , N.E. Liu, Y.M. Wei, The influence of grain size on the corrosion resistance of nanocrystalline zirconium metal, Mater, Sci. Eng. A 448 (2007) 259-263.

DOI: 10.1016/j.msea.2006.10.029

Google Scholar

[117] R.K. Gupta, N. Birbilis, J. Zhang, Oxidation resistance of nanocrystalline alloys, in: M. Shih (Ed. ), Corrosion Resistance, InTec, Vienna, 2012, pp.213-238.

Google Scholar

[118] Y. Zhao, I.C. Cheng, M.E. Kassner, A.M. Hodge, The effect of nanotwins on the corrosion behavior of copper, Acta Mater. 67 (2014) 181-188.

DOI: 10.1016/j.actamat.2013.12.030

Google Scholar

[119] B. Schuster, F. Fujara, B. Merk, R. Neumann, T. Seidi, C. Trautmann, Response behavior of ZrO2 under swift heavy ion irradiation with and without external pressure, Nucl. Instr. Meth. Phys. Res. B 277 (2012) 45-52.

DOI: 10.1016/j.nimb.2011.12.060

Google Scholar

[120] G.S. Fox-Rabinovich, J.L. Endrino, M.H. Aguirre, B.D. Beake, S.C. Veldhuis, A.I. Kovalev, I.S. Gershman, K. Yamamoto, Y. Losset, D.L. Wainstein, A. Rashkovskiy, Mechanism of adaptability for the nano-structured TiAlCrSiYN-based hard physical vapor deposition coatings under extreme frictional conditions, J. Appl. Phys. 111 (2012).

DOI: 10.1063/1.3693032

Google Scholar

[121] H. Gleiter, J. Weissesmüller, O. Wollersheim, R. Würschum, Nanocrystalline materials: a way to solids with tunable electron structure and properties? Acta Mater. 48 (2001) 737-745.

DOI: 10.1016/s1359-6454(00)00221-4

Google Scholar

[122] H. Gleiter, Our thoughts are ours, their ends none of our own: are there ways to synthesize materials beyond the limitations of today? Acta Mater. 56 (2008) 5875-5893.

DOI: 10.1016/j.actamat.2008.08.028

Google Scholar

[123] R.A. Andrievski, Metallic nano/microglasses: new approaches in nanostructured materials science, Physics–Uspekhi 56 (2013) 261-268.

DOI: 10.3367/ufne.0183.201303c.0277

Google Scholar

[124] H. Gleiter, Th. Schimmel, H. Hahn, Nanostructured solids – from nano-glasses to quantum transistors, Nano Today 9 (2014) 17-66.

DOI: 10.1016/j.nantod.2014.02.008

Google Scholar