The Role of Grain Boundaries and other Defects on Phase Transformations Induced by Severe Plastic Deformation

Article Preview

Abstract:

During the past two decades, processing of ultrafine grained materials using severe plastic deformation techniques has attracted great interest in the scientific community. Although the up-scaling of processes and the lack of ductility of ultrafine grained alloys are still some important challenges, these techniques look promising because they produce bulk materials free of porosities. More recently, some strategies to combine precipitation hardening and ultrafine grained structures have been proposed. It has also been shown that nanoscaled composite materials could be successfully processed. This experimental work rose however some very fundamental scientific questions about the influence of severe plastic deformation on the precipitation mechanisms or on the formation of supersaturated solid solution through mechanical mixing. The driving force and the thermodynamics of these phase transformations are of course affected by the high amount of energy stored in severely deformed alloys, especially as interfacial energy. But grain boundaries, with the help of dislocations and point defects, also play an important role in the kinetics. In this paper, it is proposed to shortly review these phenomena and the underlying mechanisms with a special emphasis on the contribution of grain boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-92

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.O. Hall, Proc. Phys. Soc. B 64 (1951) 747.

Google Scholar

[2] N.J. Petch, J. Iron Steel Instrum. 173 (1953) 25.

Google Scholar

[3] E. Ma, Nature Mater. 2 (2003) 7.

Google Scholar

[4] R. Valiev, Nature Mater. 3 (2004) 511.

Google Scholar

[5] Y. Saito, H. Utsunomiya, N. Tsuji, T. Saikai, Acta Mater. 47 (1999) 579.

Google Scholar

[6] Levi FP. J Appl Phys 31 (1960) 1469.

Google Scholar

[7] V.M. Segal, V.I. Reznikov, A.E. Drobyshevkij, V.I. Kopylov, Metally 1 (1981) 115.

Google Scholar

[8] D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, Z. Horita, Mater Trans. 49 (2008) 2.

Google Scholar

[9] P.W. Bridgman, Phys. Rev. 48 (1935) 825.

Google Scholar

[10] R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Mater. Sci. Eng. A137 (1991) 35.

Google Scholar

[11] R.Z. Valiev, , R.K. Islamgaliev, I.V. Alexandrov, Prog in Mater Sci 45 (2000) 103.

Google Scholar

[12] R.Z. Valiev, T.G. Langdon, Progress in Materials Science 51 (2006) 881.

Google Scholar

[13] Y. Ivanisenko, I. MacLaren, X. Sauvage, R.Z. Valiev, H. -J. Fecht, Acta Mater. 54 (2006) 1659.

DOI: 10.1016/j.actamat.2005.11.034

Google Scholar

[14] X. Sauvage, Y. Ivanisenko, J. Mater. Sci. 42 (2007) 1615.

Google Scholar

[15] A.V. Korznikov, O. Dimitrov, G.F. Korznikova, J.P. Dallas, A. Quivy, R.Z. Valiev, A. Mukherjee, Nanostruct. Mater. 11 (1999) 17.

DOI: 10.1016/s0965-9773(98)00157-3

Google Scholar

[16] A.V. Korznikov, O. Dimitrov, G.F. Korznikova, J.P. Dallas, S.R. Idrisova, R.Z. Valiev, F. Faudot, Acta Mater. 47 (1999) 3301.

DOI: 10.1016/s1359-6454(99)00172-x

Google Scholar

[17] X. Sauvage, P. Jessner, F. Vurpillot, R. Pippan, Scripta Mater 58 (2008) 1125.

Google Scholar

[18] I. Sabirov, R. Pippan, Scripta Mater. 52 (2005) 1293.

Google Scholar

[19] J.A. Wert, X. Huang, G. Winther, W. Pantleon, H.F. Poulsen, Materials today 10 (2007) 24.

Google Scholar

[20] R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, I. Sabirov, Adv. Eng. Mat. 8 (2006) 1046.

DOI: 10.1002/adem.200600133

Google Scholar

[21] H.W. Zhang, N. Hansen, J. Mater Sci 42 (2007) 1682.

Google Scholar

[22] X. Sauvage, G. Wilde, S. Divinsky, Z. Horita, R.Z. Valiev, Mat. Sci. Eng. A 540 (2012) 1-12.

Google Scholar

[23] E. Ma, JOM 58 (2006) 49.

Google Scholar

[24] S. Cheng, Y.H. Zhao, Y.T. Zhu, E. Ma, Acta Mater. 55 (2007)5822.

Google Scholar

[25] W.J. Kim, J.K. Kim, T.J. Park, S.I. Hong, D.I. Kim, Y.S. Kim, J.D. Lee, Metall. Mater. Trans. A 33 (2002) 3155.

Google Scholar

[26] J. K. Kim, H.K. Kim, J.W. Park, W.J. Kim, Scripta Mater. 53 (2005) 1207.

Google Scholar

[27] Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu, Adv. Mater. 18 (2006) 2280.

Google Scholar

[28] K. Ohashi, T. Fujita, K. Kaneko, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 437 (2006) 240-247.

Google Scholar

[29] A. Cerri, P. Leo, Mat. Sci. Eng. A 410-411 (2005) 226.

Google Scholar

[30] G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer, T.G. Langdon, Acta Mater 57 (2009) 3123.

Google Scholar

[31] J. Cizek, I. Prochazka, B. Smola, I. Stulikova, R. Kuzel, Z. Matej, V. Cherkaska, R.K. Islamgaliev, O. Kulyasova, Mater. Sci. Forum 503-504 (2006) 149.

DOI: 10.1007/1-4020-4972-2_429

Google Scholar

[32] B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Philipp, O.A. Kogtenkova, M.N. Volkov, R.Z. Valiev, Acta Mater. 52 (2004) 4469.

DOI: 10.1016/j.actamat.2004.06.006

Google Scholar

[33] Z. Horita, K. Ohashi, T. Fujita, K. Kaneka, T.G. Langdon, Adv. Mater. 17 (2005) 1599.

Google Scholar

[34] A. Deschamps, F. De Geuser, Z. Horita, S. Lee, G. Renou, Acta Materialia 66 (2014) 105–117.

DOI: 10.1016/j.actamat.2013.11.071

Google Scholar

[35] A. Fillon, X. Sauvage, A. Pougis, O. Bouaziz, D. Barbier, R. Arruffat, L.S. Toth, J Mater Sci 47 (2012) 7939–7945.

DOI: 10.1007/s10853-012-6536-6

Google Scholar

[36] A. Chbihi, X. Sauvage, D. Blavette, J Mater Sci 49 (2014) 6240–6247.

Google Scholar

[37] Keiichiro Oh-ishi, Kaveh Edalati, Hyoung Seop Kim, Kazuhiro Hono, Zenji Horita, Acta Materialia 61 (2013) 3482–3489.

DOI: 10.1016/j.actamat.2013.02.042

Google Scholar

[38] Shoichi Hirosawo, Takumi Hamaoka, Zenji Horita, Seungwon Lee, Kenji Matsuda, and Daisuke Terada, Met. Mat. Trans. A 44 (2013) 2013—3921.

Google Scholar

[39] J.D. Embury, R.M. Fisher, Acta Metall. 14 (1966) 147.

Google Scholar

[40] G. Langford, Met. Trans. 1 (1970) 465.

Google Scholar

[41] Jingtao Wang, Suk-Bong Kang, Hyoung-Wook Kim, Materials Science and Engineering A 383 (2004) 356–361.

Google Scholar

[42] J. Languillaume, G. Kapelski, B. Baudelet, Acta Mater. 45 (1997) 1201.

Google Scholar

[43] X. Sauvage, W. Lefebvre, C. Genevois, S. Ohsaki, K. Hono, Scripta Mater. 60 (2009) 1056–1061.

Google Scholar

[44] X. Sauvage, C. Genevois, G. Da Costa, V. Pantsyrny, Scripta Materialia 61 (2009) 660–663.

DOI: 10.1016/j.scriptamat.2009.06.007

Google Scholar

[45] A. Bachmaier, G.B. Rathmayr, M. Bartosik, D. Apel, Z. Zhang, R. Pippan, Acta Materialia 69 (2014) 301–313.

DOI: 10.1016/j.actamat.2014.02.003

Google Scholar

[46] A. Bachmaier, J. Keckes, K.S. Kormout and R. Pippan, Philosophical Magazine Letters, 94 (2014) 9–17.

DOI: 10.1080/09500839.2013.852284

Google Scholar

[47] Xavier Sauvage and Shamil Mukhtarov, IOP Conf. Series: Materials Science and Engineering 63 (2014) 012173.

Google Scholar

[48] X. Quelennec, A. Menand, J.M. Le Breton, R. Pippan, X. Sauvage, Philos. Mag. 90 (2010) 1179–1195.

DOI: 10.1080/14786430903313682

Google Scholar

[49] A. Bachmaier and R. Pippan, International Materials Reviews 58 (2013) 41.

Google Scholar

[50] M. Murayama, Z. Horita, K. Hono, Acta. Mater. 49 (2001) 21.

Google Scholar

[51] B.B. Straumal, A.R. Kilmametov, Y. Ivanisenko, L. Kurmanaeva, B. Baretzky, Y.O. Kucheev, P. Zięba, A. Korneva, D.A. Molodov, Phase transitions during high pressure torsion of Cu–Co alloys, Materials Letters 118 (2014) 111–114.

DOI: 10.1016/j.matlet.2013.12.042

Google Scholar

[52] X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D. H. Ping and K. Hono, Acta. Mater. 49 (2001) 389-394.

DOI: 10.1016/s1359-6454(00)00338-4

Google Scholar

[53] Y.F. Sun, H. Fujii, T. Nakamura, N. Tsuji, D. Todaka and M. Umemoto, Scripta Materialia 65 (2011) 489–492.

DOI: 10.1016/j.scriptamat.2011.06.005

Google Scholar

[54] X. Sauvage, Y. Champion, R. Pippan, F. Cuvilly, L. Perrière, A. Akhatova, O. Renk, J Mater Sci 49 (2014) 5640–5645.

DOI: 10.1007/s10853-014-8279-z

Google Scholar

[55] S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, K. Hono, Acta Materialia 55 (2007) 2885–2895.

DOI: 10.1016/j.actamat.2006.12.027

Google Scholar

[56] X. Sauvage, D.G. Dinda, G. Wilde, Scripta Mater 56 (2007) 181-184.

Google Scholar

[57] C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1.

Google Scholar

[58] A. Yavari, P. Desré, T. Benameur, Phys. Rev. Let. 68 (1992) 2235.

Google Scholar

[59] C. Gente, M. Oehring and R. Bormann, Phys. Rev. B 48 (1993) 13244.

Google Scholar

[60] J. Eckert, J. Holzer, C. Krill and W. Johnson, J. Appl. Phys. 73 (1993) 2794.

Google Scholar

[61] P. Bellon and R. Averback, Phys. Rev. Letters 74 (1995) 1819.

Google Scholar

[62] M. Wang, N.Q. Vo, M. Campion, T.D. Nguyen, D. Setman, S. Dillon, P. Bellon a, R.S. Averback, Acta Materialia 66 (2014) 1–11.

DOI: 10.1016/j.actamat.2013.11.066

Google Scholar

[63] F. Wu, D. Isheim, P. Bellon and D. Seidman, Acta Mater. 54 (2006) 2605.

Google Scholar

[64] E. Ma, M. Atzmon, Mat. Chem. and Phys. 39 (1995) 249.

Google Scholar

[65] B. Khina, I. Soplan and G. Lovshenko, Jour Mat. Sci. 39 (2004) 5135.

Google Scholar

[66] P. Pochet, E. Tominez, L. Chaffron, G. Martin, Phys. Rev. B 52 (1995) 4006.

Google Scholar

[67] X. Sauvage, F. Wetscher, P. Pareige, Acta Materialia 53 (2005) 2127.

Google Scholar

[68] X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, M. Murashkin, Acta Materialia 72 (2014) 125–136.

DOI: 10.1016/j.actamat.2014.03.033

Google Scholar

[69] X. Sauvage, M. Yu. Murashkin, R. Z. Valiev, Kovove Mater. 49 (2011) 11–15.

Google Scholar

[70] R.Z. Valiev, M. Yu. Murashkin and I. Sabirov, Scripta Materialia 76 (2014) 13–16.

Google Scholar

[71] G. Sha, K. Tugcu, X.Z. Liao, P.W. Trimby, M.Y. Murashkin, R.Z. Valiev, S.P. Ringer, Acta Materialia 63 (2014) 169–179.

DOI: 10.1016/j.actamat.2013.10.022

Google Scholar

[72] A. Hohenwarter, M. Faller, B. Rashkova and R. Pippan, Philosophical Magazine Letters 94 (2014) 342-350.

DOI: 10.1080/09500839.2014.907508

Google Scholar

[73] Nguyen Q. Chinh, Ruslan Z. Valiev, Xavier Sauvage, Gábor Varga, Károly Havancsák, Megumi Kawasaki, Boris B. Straumal, Terence G. Langdon, Adv. Eng. Mater 16 (2014) 1000-1009.

DOI: 10.1002/adem.201300450

Google Scholar

[74] Kaveh Edalati, Reza Miresmaeili, Zenji Horita, Hiroshi Kanayama, Reinhard Pippan, Materials Science and Engineering A 528 (2011) 7301– 7305.

DOI: 10.1016/j.msea.2011.06.031

Google Scholar

[75] P. Lejcek, Grain boundary segregations in metals, Springer-Verlag Berlin Heidelberg (2010).

Google Scholar

[76] R. Kirchheim, Acta Mater 55 (2007) 5129.

Google Scholar

[77] R. Kirchheim, Acta Mater 55 (2007) 5139.

Google Scholar

[78] R.Z. Valiev, Mater. Sci. Forum 584-586 (2008) 22.

Google Scholar

[79] X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Mat Sci Eng A 540 (2012) 1.

Google Scholar

[80] H.W. Zhang, X. Huang, R. Pippan, N. Hansen, Acta Mater. 58 (2010) 1698.

Google Scholar

[81] Xavier Sauvage, Gerhard Wilde and Ruslan Valiev, Materials Science Forum Vols. 667-669 (2011) 169-174.

Google Scholar

[82] Z. Hegedus, J. Gubicza, M. Kawasaki, N.Q. Chinh, Z. Fogarassy, T.G. Langdon, Mat Sci Eng A 528 (2001) 8694.

Google Scholar

[83] R.K. Rajgarhia, A. Saxena, D.E. Spearot, K.T. Hartwig, K.L. More, E.A. Kenik, H. Meyer, J. Mater. Sci. 45 (2010) 6707.

DOI: 10.1007/s10853-010-4764-1

Google Scholar

[84] X. Sauvage, A. Ganeev, Y. Ivanisenko, N. Enikeev, M. Murashkin, R. Valiev, Adv. Eng. Mat. 14 (2012) 968–974.

DOI: 10.1002/adem.201200060

Google Scholar

[85] S. Ohsaki, K. Hono, H. Hidaka, S. Takaki, Scripta Materialia 52 (2005) 271.

DOI: 10.1016/j.scriptamat.2004.10.020

Google Scholar

[86] I. Semenova, G. Salimgareeva, G. Da Costa, W. Lefebvre, R. Valiev, Adv. Eng. Mater. 12 (2010) 803.

DOI: 10.1002/adem.201000059

Google Scholar

[87] G. Nurislamova, X. Sauvage, M. Murashkin, R. Islamgaliev, R. Valiev, Phil. Mag. Lett. 8 (2008) 459.

Google Scholar

[88] P. V. Liddicoat, X-Z. Liao, Y. Zhao, Y.T. Zhu, M.Y. Murashkin, E.J. Lavernia, R.Z. Valiev, S.P. Ringer, Nature Com. 1 (2010) 63.

Google Scholar

[89] R. Z. Valiev, N.A. Enikeev, M. Yu. Murashkin, V.U. Kazykhanov, X. Sauvage, Scripta Mater. 63 (2010) 949.

DOI: 10.1016/j.scriptamat.2010.07.014

Google Scholar

[90] B.B. Straumal, X. Sauvage, B. Baretzky, A.A. Mazilkin, R.Z. Valiev, Scripta Materialia 70 (2014) 59–62.

DOI: 10.1016/j.scriptamat.2013.09.019

Google Scholar

[91] W. Cao, C. Gu, E. Pereloma and C. Davies, Mater. Sci. Eng. A 492 (2008) 74.

Google Scholar

[92] B. Oberdorfer, E. -M. Steyskal, W. Sprengel, W. Puff, P. Pikart, C. Hugenschmidt, M. Zehetbauer, R. Pippan, R. Würschum, Phys. Rev. Lett. 105 (2010) 146101.

DOI: 10.1103/physrevlett.105.146101

Google Scholar

[93] B. Radiguet, A. Etienne, P. Pareige, X. Sauvage, R. Valiev, Jour. Mat. Sci. 43 (2008) 7338.

Google Scholar

[94] Y. Amouyal, S.V. Divinski, Y. Estrin and E. Rabkin, Acta Mater. 55 (2007) 5968.

Google Scholar

[95] G. Wilde, J. Ribbe, G. Reglitz, M. Wegner, H. Rösner, Y. Estrin, M. Zehetbauer, D. Setman, S. Divinski, Adv. Eng. Mater. 12 (2010) 758.

DOI: 10.1002/adem.200900333

Google Scholar

[96] D. Setman, E. Schafler, E. Korznikova and M. Zehetbauer, Mat. Sci. Eng. A 4923 (2008) 116.

Google Scholar

[97] S. Van Petegem, F. Dalla Torre, D. Segers and H. Van Swygenhoven, Scripta Mater. 48 (2003) 17.

DOI: 10.1016/s1359-6462(02)00322-6

Google Scholar

[98] R. Würschum, W. Greiner, R.Z. Valiev, M. Rapp, W. Sigle, O. Schneeweiss and H. Schaefer, Scripta Metall. 25 (1991) 2451.

DOI: 10.1016/0956-716x(91)90048-6

Google Scholar

[99] G. Saada, Physica 27 (1961) 657.

Google Scholar

[100] A.L. Ruoff and R.W. Balluffi, J. Appl. Phys. 34 (1963) 2862.

Google Scholar

[101] H. Mecking and Y. Estrin, Scripta Metall. 14 (1980) 815.

Google Scholar

[102] K. Sato, T. Yoshiie, Y. Satoh, E. Kuramoto and M. Kiritani, Radiat. Eff. Def. Solid. 157 (2002) 171.

Google Scholar

[103] K. Sato, T. Yoshiie, Y. Satoh, Q. Xu and M. Kiritani, Mater. Sci. Eng. A 350 (2003) 220.

Google Scholar

[104] S. Kojima, A. Yokoyama, M. Komatsu and M. Kiritani, Mater. Sci. Eng. A 350 (2003) 81.

Google Scholar

[105] M. Kiritani, Y. Satoh, Y. Kizuka, K. Arakawa, Y. Ogasawara, S. Arai and Y. Shimomura, Phil. Mag. Lett. 79 (1999) 797.

Google Scholar

[106] E. Schafler, Scripta Materialia 62 (2010) 423–426.

Google Scholar

[107] L.H. Su, C. Lu, L.Z. He, L.C. Zhang, P. Guagliardo, A.K. Tieu, S.N. Samarin, J.F. Williams, H.J. Li, Acta Materialia 60 (2012) 4218–4228.

DOI: 10.1016/j.actamat.2012.04.003

Google Scholar

[108] Keiichiro Oh-ishi, Kaveh Edalati, Hyoung Seop Kim, Kazuhiro Hono, Zenji Horita, Acta Materialia 61 (2013) 3482–3489.

DOI: 10.1016/j.actamat.2013.02.042

Google Scholar

[109] J. Wilde, A. Cerezo, G.D.W. Smith, Scripta Mater 43 (2000) 39.

Google Scholar

[110] V.N. Gridnev, V.G. Gavrilyuk, Phys Metals 4 (1982) 531.

Google Scholar

[111] A. Vehanen, P. Hautojarvi, J. Johansson, J. Yli-Kauppila, Phys. Rev. B 25 (1982) 762.

Google Scholar

[112] J.E. McLennan, Acta Metall 13 (1965) 1299.

Google Scholar

[113] M. Legros, G. Dehm, E. Arzt, T. J. Balk, Science 319 (2008) 1646-1649.

Google Scholar

[114] A.V. Kazantzis, Z.G. Chen, J. Th.M. De Hosson, J Mater Sci 48 (2013) 7399.

Google Scholar

[115] W.A. Soer, A.R. Chezan, J. Th.M. De Hosson, Acta Mater 54 (2006) 3827.

Google Scholar

[116] O. Renk, A. Hohenwarter, S. Wurster, R. Pippan, Acta Materialia 77 (2014) 401–410.

DOI: 10.1016/j.actamat.2014.06.010

Google Scholar

[117] Bo Yang, Horst Vehoff, Anton Hohenwarter, Martin Hafok and Reinhard Pippan, Scripta Materialia 58 (2008) 790–793.

DOI: 10.1016/j.scriptamat.2007.12.039

Google Scholar

[118] M.M. Abramova, N.A. Enikeev, R.Z. Valiev, A. Etienne, B. Radiguet, Y. Ivanisenko, X. Sauvage, MaterialsLetters 136 (2014) 349–352.

DOI: 10.1016/j.matlet.2014.07.188

Google Scholar