Effect of Grain Boundary State on Diffusion and Diffusion-Controlled Processes in Ultrafine-Grained Materials Processed by Severe Plastic Deformation

Article Preview

Abstract:

Experimental studies on the grain boundary diffusion and processes controlled by it in the ultrafine-grained metallic materials produced by various methods of severe plastic deformation are reviewed. Correlation between the increased diffusion permeability of grain boundaries and features of recrystallization and deformation development in these materials possessing the non-equilibrium state of grain boundaries formed during severe plastic deformation in the temperature range of T < 0.35Tm is demonstrated and analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-126

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, R. Sh. Musalinov, High-resolution electron microscopy of nanocrystalline materials, Phys. Met. Metallogr. 78 (1994) 114-121.

Google Scholar

[2] M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Microstructural characteristics of an ultrafine-grain metal processed with equal-channel angular pressing, Materials Characterization 37 (1996) 277-284.

DOI: 10.1016/s1044-5803(96)00131-3

Google Scholar

[3] A.P. Zhilyaev, B.K. Kim, G.V. Nurislanova M.D. Baro, J.A. Szpunar, T.G. Langdon, Orientation imaging microscopy of ultrafine-grained nickel, Scripta Mater. 46 (2002) 573-580.

DOI: 10.1016/s1359-6462(02)00018-0

Google Scholar

[4] N.I. Noskova, R.R. Mulyukov, Submicrocrystalline and nanocrystalline metals and alloys, UB RAS, Ekaterinburg, Russia, 2003 [in Russian].

Google Scholar

[5] Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, T.G. Langdon, Effect of annealing on grain boundary structure in submicrometer-grained Al-3%Mg alloy observed by high-resolution electron microscopy, Ann. Chim. Fr. 21 (1996) 417-426.

DOI: 10.4028/www.scientific.net/msf.204-206.437

Google Scholar

[6] R. Sh. Musalinov, R.Z. Valiev, Dilatometric analysis of aluminum alloy with submicrometer- grained structure, Scripta Met. Mater. 27 (1992) 1685-1690.

DOI: 10.1016/0956-716x(92)90002-v

Google Scholar

[7] I.V. Alexandrov, K. Zhang, K. Lu, X-ray studies of crystallite size and structure defects in ultrafine-grained copper, Ann. Chim. Fr. 21 (1996) 407-416.

Google Scholar

[8] V.A. Shabashov, N.P. Filippova, V.V. Ovchinnikov, R.R. Mulyukov, R.Z. Valiev, Determination of the Grain-Boundary Phase, in Submicrocrystalline Iron by Mössbauer Spectroscopy, Phys. Met. Metallogr. 85 (1998) 318-326.

DOI: 10.1016/s0965-9773(99)00383-9

Google Scholar

[9] V.V. Popov, G.P. Grabovetskaya, A.V. Sergeev, I.P. Mishin, Mössbauer Spectroscopy of Grain Boundaries in Submicrocrystalline Molybdenum Obtained by Severe Plastic Deformation, Phys. Met. Metallogr. 106 (2008) 490-494.

DOI: 10.1134/s0031918x08110082

Google Scholar

[10] V.V. Popov, V.N. Kaigorodov, E.N. Popova, A.V. Stolbovsky, NGR Investigation of Grain-Boundary Diffusion in Poly- and Nanocrystalline Nb, Def. Diffus. Forum 263 (2007) 69-74.

DOI: 10.4028/www.scientific.net/ddf.263.69

Google Scholar

[11] Yu.R. Kolobov, G.P. Grabovetskaya, K.V. Ivanov, M.B. Ivanov, Grain Boundary Diffusion and Mechanisms of Creep of Nanostructured Metals, Interface Science 10 (2002) 31-36.

DOI: 10.1023/a:1015128928158

Google Scholar

[12] G.P. Grabovetskaya, I.P. Mishin, I.V. Ratochka, S.G. Psakhie, Yu.R. Kolobov, Grain-Boundary Diffusion of Nickel in Submicrocrystalline Molybdenum Processed by Severe Plastic Deformation, Technical Physics Letters 34 (2008) 136-138.

DOI: 10.1134/s1063785008020156

Google Scholar

[13] S.V. Divinski, G. Reglitz, H. RoЁsner, Yu. Estrin, G. Wild, Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing, Acta Mater. 59 (2011) 1974-(1985).

DOI: 10.1016/j.actamat.2010.11.063

Google Scholar

[14] A.P. Zhilyaev, A.I. Pshenichnikov, The superplasticity and grain boundaries in ultrafine-grained materials, FIZMATLIT, Moscow, Russia, 2008 [in Russian].

Google Scholar

[15] G.P. Grabovetskaya, I.P. Mishin, Evolution of a grain boundary ensemble of submicrocrystalline molybdenum annealed under nickel, Russ. Phys. J. 55 (2012) 92-98.

DOI: 10.1007/s11182-012-9780-y

Google Scholar

[16] G.P. Grabovetskaya, I.P. Mishin, V.V. Popov, A.V. Sergeev, Evolution of misorientation spectrum condition of grain boundary diffusion of nickel, Phys. Met. Metallogr. 114 (2013) 1045-1052.

DOI: 10.1134/s0031918x1312003x

Google Scholar

[17] S.A. Hackney, Experimental observation of triple junction behavior during DIGM, Scripta Met. 22 (1988) 1255-1260.

DOI: 10.1016/s0036-9748(88)80142-x

Google Scholar

[18] G. Meyrick, V. Siger, P.G. Shewmon, Morphological changes due to diffusion induced grain boundary migration, Acta Met. 33 (1985) 273-279.

DOI: 10.1016/0001-6160(85)90145-2

Google Scholar

[19] A.D. Korotaev, Yu.I. Pochivalov, The phenomenon of diffusion-induced migration of grain boundaries, Russ. Phys. J. 35 (1992) 34-57.

Google Scholar

[20] Yu.R. Kolobov, G.P. Grabovetskaya, K.V. Ivanov, N.V. Girsova. Effect of grain boundary state and grain size on the mechanisms of creep of submicrocrystalline nickel, Phys. Met. Metallogr. 95 (2001) 532-537.

Google Scholar

[21] Y.R. Kolobov, G.P. Grabovetskaya, K.V. Ivanov, R.Z. Valiev, Y.T. Zhu, Grain boundary diffusion and creep of UFG Ti and Ti-6Al-4V alloy processed by severe plastic deformation. In The Minerals, Metals and Materials Society (Eds. Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin, and T.C. Lowe), 2004, 621 – 628.

DOI: 10.1007/978-94-011-4062-1_33

Google Scholar

[22] R. Wurschum, A. Kubler, S. Gruss P. Scharwaechter, W. Frank, R.Z. Valiev, R.R. Mulyukov, H. -E. Schaefer, Tracer diffusion and crystalline growth in ultra-fine grained Pd prepared by severe plastic deformation, Ann. Chim. Fr. 21 (1996) 471-482.

Google Scholar

[23] H. Tanimoto, P. Farber, R. Wurschum , R.Z. Valiev, H.E. Schaefer, Self-diffusion in high-density nanocrystalline Fe, Nanostructured Materials 12 (1999) 681-684.

DOI: 10.1016/s0965-9773(99)00216-0

Google Scholar

[24] Yu.M. Mishin, I.M. Razumovskii, Mathematical models and methods of identification of individual grain boundary diffusion parameters. In Structure and properties of inner surfaces in metals (Ed. B.S. Bokshtein), Nauka, Moscow, 1988, 96-131 [in Russian].

Google Scholar

[25] A.V. Korznikov, O. Dimitrov, G. Korznikova, Thermal evolution of the structure of ultra fine grained materials produced by severe plastic deformation, Ann. Chim. Fr. 21 (1996) 443- 447.

Google Scholar

[26] G.P. Grabovetskaya, Yu.R. Kolobov, K.V. Ivanov, N.V. Girsov, Structure and Creep Behavior of Nanostructured Materials Produced by Severe Plastic Deformation, Phys. Met. Metallogr. 94 (2002) S37-S44.

Google Scholar

[27] F. Dalla Torre, H. Van Swygenhoven, M. Victoria, Nanocrystalline electrodeposited Ni: microstructure and tensile properties, Acta Mater. 51 (2002) 3957-3970.

DOI: 10.1016/s1359-6454(02)00198-2

Google Scholar

[28] E.V. Naydenkin, Structure stabilization of ultrafine–grained nickel by grain boundary segregations of copper. Information on http: /www. iopscience. iop. org/1757-899X/63/1.

Google Scholar

[29] G.P. Grabovetskaya, I.P. Mishin, I.V. Ratochka, O.V. Zabudchenko, Yu.R. Kolobov, Surface impurity diffusion-induced recrystallization of ultrafine-grained molybdenum, Russ. Phys. J. 50 (2007) 451-457.

DOI: 10.1007/s11182-007-0065-9

Google Scholar

[30] Yu.R. Kolobov, Diffusion-controlled processes on grain boundaries and plasticity of metal polycrystals, Nauka publ., Novosibirsk, Russia, 1998 [in Russian].

Google Scholar

[31] V.E. Panin, V.M. Fomin, V.M. Titov, Physical principles of mesomechanics of surface layers and internal interfaces in a solid under deformation, Phys. Mesomech. 6 (2003) 5-14.

Google Scholar

[32] N.A. Koneva, L.I. Trishkina, A.N. Zhdanov, O.B. Perevalova, N.A. Popova, E.V. Kozlov, Sources of stress fields in deformed polycrystals, Phys. Mesomech. 9 (2006) 93-102.

Google Scholar

[33] E.V. Kozlov, N.A. Koneva, A.N. Zhdanov, N. A Popova, Yu.F. Ivanov, Structure and resistance to deformation of FCC ultrafine-grained metals and alloys, Phys. Mesomech. 7 (2004) 93-113.

Google Scholar

[34] E.V. Naydenkin, G.P. Grabovetskaya, K.V. Ivanov, The Effect of Grain Boundary State on Deformation Process Development in Nanostructured Metals Processed by the Methods of Severe Plastic Deformation, Mater. Sci. Forum 683 (2011) 69-79.

DOI: 10.4028/www.scientific.net/msf.683.69

Google Scholar

[35] E.F. Dudarev, G.P. Pochvalova, Yu.R. Kolobov, E.V. Naidenkin, O.A. Kashin, Diffusion controlled true grain boundary sliding in nanostructured metals and alloys, Mat. Sci. Eng. A. 503 (2009) 58-61.

DOI: 10.1016/j.msea.2008.02.057

Google Scholar

[36] S.X. McFadder, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, A.K. Mukherjee, Low-temperature superplasticity in nanostructured nickel and metal alloys, Letters to Nature 398 (1999) 684-686.

DOI: 10.1038/19486

Google Scholar

[37] G.P. Grabovetskaya, Creep mechanisms in bulk submicrocrystalline metals under the influence of diffusion fluxes of coating additive atoms, Phys. Mesomech. 8 (2005) 49-60.

Google Scholar

[38] Yu.R. Kolobov, G.P. Grabovetskaya, M.B. Ivanov, K.V. Ivanov, E.V. Naydenkin, Diffusion and plasticity of submicrocrystalline metals and alloys, Solid State Phenom. 94 (2003) 35-40.

DOI: 10.4028/www.scientific.net/ssp.94.35

Google Scholar