[1]
R.Z. Valiev, R. Sh. Musalinov, High-resolution electron microscopy of nanocrystalline materials, Phys. Met. Metallogr. 78 (1994) 114-121.
Google Scholar
[2]
M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Microstructural characteristics of an ultrafine-grain metal processed with equal-channel angular pressing, Materials Characterization 37 (1996) 277-284.
DOI: 10.1016/s1044-5803(96)00131-3
Google Scholar
[3]
A.P. Zhilyaev, B.K. Kim, G.V. Nurislanova M.D. Baro, J.A. Szpunar, T.G. Langdon, Orientation imaging microscopy of ultrafine-grained nickel, Scripta Mater. 46 (2002) 573-580.
DOI: 10.1016/s1359-6462(02)00018-0
Google Scholar
[4]
N.I. Noskova, R.R. Mulyukov, Submicrocrystalline and nanocrystalline metals and alloys, UB RAS, Ekaterinburg, Russia, 2003 [in Russian].
Google Scholar
[5]
Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, T.G. Langdon, Effect of annealing on grain boundary structure in submicrometer-grained Al-3%Mg alloy observed by high-resolution electron microscopy, Ann. Chim. Fr. 21 (1996) 417-426.
DOI: 10.4028/www.scientific.net/msf.204-206.437
Google Scholar
[6]
R. Sh. Musalinov, R.Z. Valiev, Dilatometric analysis of aluminum alloy with submicrometer- grained structure, Scripta Met. Mater. 27 (1992) 1685-1690.
DOI: 10.1016/0956-716x(92)90002-v
Google Scholar
[7]
I.V. Alexandrov, K. Zhang, K. Lu, X-ray studies of crystallite size and structure defects in ultrafine-grained copper, Ann. Chim. Fr. 21 (1996) 407-416.
Google Scholar
[8]
V.A. Shabashov, N.P. Filippova, V.V. Ovchinnikov, R.R. Mulyukov, R.Z. Valiev, Determination of the Grain-Boundary Phase, in Submicrocrystalline Iron by Mössbauer Spectroscopy, Phys. Met. Metallogr. 85 (1998) 318-326.
DOI: 10.1016/s0965-9773(99)00383-9
Google Scholar
[9]
V.V. Popov, G.P. Grabovetskaya, A.V. Sergeev, I.P. Mishin, Mössbauer Spectroscopy of Grain Boundaries in Submicrocrystalline Molybdenum Obtained by Severe Plastic Deformation, Phys. Met. Metallogr. 106 (2008) 490-494.
DOI: 10.1134/s0031918x08110082
Google Scholar
[10]
V.V. Popov, V.N. Kaigorodov, E.N. Popova, A.V. Stolbovsky, NGR Investigation of Grain-Boundary Diffusion in Poly- and Nanocrystalline Nb, Def. Diffus. Forum 263 (2007) 69-74.
DOI: 10.4028/www.scientific.net/ddf.263.69
Google Scholar
[11]
Yu.R. Kolobov, G.P. Grabovetskaya, K.V. Ivanov, M.B. Ivanov, Grain Boundary Diffusion and Mechanisms of Creep of Nanostructured Metals, Interface Science 10 (2002) 31-36.
DOI: 10.1023/a:1015128928158
Google Scholar
[12]
G.P. Grabovetskaya, I.P. Mishin, I.V. Ratochka, S.G. Psakhie, Yu.R. Kolobov, Grain-Boundary Diffusion of Nickel in Submicrocrystalline Molybdenum Processed by Severe Plastic Deformation, Technical Physics Letters 34 (2008) 136-138.
DOI: 10.1134/s1063785008020156
Google Scholar
[13]
S.V. Divinski, G. Reglitz, H. RoЁsner, Yu. Estrin, G. Wild, Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing, Acta Mater. 59 (2011) 1974-(1985).
DOI: 10.1016/j.actamat.2010.11.063
Google Scholar
[14]
A.P. Zhilyaev, A.I. Pshenichnikov, The superplasticity and grain boundaries in ultrafine-grained materials, FIZMATLIT, Moscow, Russia, 2008 [in Russian].
Google Scholar
[15]
G.P. Grabovetskaya, I.P. Mishin, Evolution of a grain boundary ensemble of submicrocrystalline molybdenum annealed under nickel, Russ. Phys. J. 55 (2012) 92-98.
DOI: 10.1007/s11182-012-9780-y
Google Scholar
[16]
G.P. Grabovetskaya, I.P. Mishin, V.V. Popov, A.V. Sergeev, Evolution of misorientation spectrum condition of grain boundary diffusion of nickel, Phys. Met. Metallogr. 114 (2013) 1045-1052.
DOI: 10.1134/s0031918x1312003x
Google Scholar
[17]
S.A. Hackney, Experimental observation of triple junction behavior during DIGM, Scripta Met. 22 (1988) 1255-1260.
DOI: 10.1016/s0036-9748(88)80142-x
Google Scholar
[18]
G. Meyrick, V. Siger, P.G. Shewmon, Morphological changes due to diffusion induced grain boundary migration, Acta Met. 33 (1985) 273-279.
DOI: 10.1016/0001-6160(85)90145-2
Google Scholar
[19]
A.D. Korotaev, Yu.I. Pochivalov, The phenomenon of diffusion-induced migration of grain boundaries, Russ. Phys. J. 35 (1992) 34-57.
Google Scholar
[20]
Yu.R. Kolobov, G.P. Grabovetskaya, K.V. Ivanov, N.V. Girsova. Effect of grain boundary state and grain size on the mechanisms of creep of submicrocrystalline nickel, Phys. Met. Metallogr. 95 (2001) 532-537.
Google Scholar
[21]
Y.R. Kolobov, G.P. Grabovetskaya, K.V. Ivanov, R.Z. Valiev, Y.T. Zhu, Grain boundary diffusion and creep of UFG Ti and Ti-6Al-4V alloy processed by severe plastic deformation. In The Minerals, Metals and Materials Society (Eds. Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin, and T.C. Lowe), 2004, 621 – 628.
DOI: 10.1007/978-94-011-4062-1_33
Google Scholar
[22]
R. Wurschum, A. Kubler, S. Gruss P. Scharwaechter, W. Frank, R.Z. Valiev, R.R. Mulyukov, H. -E. Schaefer, Tracer diffusion and crystalline growth in ultra-fine grained Pd prepared by severe plastic deformation, Ann. Chim. Fr. 21 (1996) 471-482.
Google Scholar
[23]
H. Tanimoto, P. Farber, R. Wurschum , R.Z. Valiev, H.E. Schaefer, Self-diffusion in high-density nanocrystalline Fe, Nanostructured Materials 12 (1999) 681-684.
DOI: 10.1016/s0965-9773(99)00216-0
Google Scholar
[24]
Yu.M. Mishin, I.M. Razumovskii, Mathematical models and methods of identification of individual grain boundary diffusion parameters. In Structure and properties of inner surfaces in metals (Ed. B.S. Bokshtein), Nauka, Moscow, 1988, 96-131 [in Russian].
Google Scholar
[25]
A.V. Korznikov, O. Dimitrov, G. Korznikova, Thermal evolution of the structure of ultra fine grained materials produced by severe plastic deformation, Ann. Chim. Fr. 21 (1996) 443- 447.
Google Scholar
[26]
G.P. Grabovetskaya, Yu.R. Kolobov, K.V. Ivanov, N.V. Girsov, Structure and Creep Behavior of Nanostructured Materials Produced by Severe Plastic Deformation, Phys. Met. Metallogr. 94 (2002) S37-S44.
Google Scholar
[27]
F. Dalla Torre, H. Van Swygenhoven, M. Victoria, Nanocrystalline electrodeposited Ni: microstructure and tensile properties, Acta Mater. 51 (2002) 3957-3970.
DOI: 10.1016/s1359-6454(02)00198-2
Google Scholar
[28]
E.V. Naydenkin, Structure stabilization of ultrafine–grained nickel by grain boundary segregations of copper. Information on http: /www. iopscience. iop. org/1757-899X/63/1.
Google Scholar
[29]
G.P. Grabovetskaya, I.P. Mishin, I.V. Ratochka, O.V. Zabudchenko, Yu.R. Kolobov, Surface impurity diffusion-induced recrystallization of ultrafine-grained molybdenum, Russ. Phys. J. 50 (2007) 451-457.
DOI: 10.1007/s11182-007-0065-9
Google Scholar
[30]
Yu.R. Kolobov, Diffusion-controlled processes on grain boundaries and plasticity of metal polycrystals, Nauka publ., Novosibirsk, Russia, 1998 [in Russian].
Google Scholar
[31]
V.E. Panin, V.M. Fomin, V.M. Titov, Physical principles of mesomechanics of surface layers and internal interfaces in a solid under deformation, Phys. Mesomech. 6 (2003) 5-14.
Google Scholar
[32]
N.A. Koneva, L.I. Trishkina, A.N. Zhdanov, O.B. Perevalova, N.A. Popova, E.V. Kozlov, Sources of stress fields in deformed polycrystals, Phys. Mesomech. 9 (2006) 93-102.
Google Scholar
[33]
E.V. Kozlov, N.A. Koneva, A.N. Zhdanov, N. A Popova, Yu.F. Ivanov, Structure and resistance to deformation of FCC ultrafine-grained metals and alloys, Phys. Mesomech. 7 (2004) 93-113.
Google Scholar
[34]
E.V. Naydenkin, G.P. Grabovetskaya, K.V. Ivanov, The Effect of Grain Boundary State on Deformation Process Development in Nanostructured Metals Processed by the Methods of Severe Plastic Deformation, Mater. Sci. Forum 683 (2011) 69-79.
DOI: 10.4028/www.scientific.net/msf.683.69
Google Scholar
[35]
E.F. Dudarev, G.P. Pochvalova, Yu.R. Kolobov, E.V. Naidenkin, O.A. Kashin, Diffusion controlled true grain boundary sliding in nanostructured metals and alloys, Mat. Sci. Eng. A. 503 (2009) 58-61.
DOI: 10.1016/j.msea.2008.02.057
Google Scholar
[36]
S.X. McFadder, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, A.K. Mukherjee, Low-temperature superplasticity in nanostructured nickel and metal alloys, Letters to Nature 398 (1999) 684-686.
DOI: 10.1038/19486
Google Scholar
[37]
G.P. Grabovetskaya, Creep mechanisms in bulk submicrocrystalline metals under the influence of diffusion fluxes of coating additive atoms, Phys. Mesomech. 8 (2005) 49-60.
Google Scholar
[38]
Yu.R. Kolobov, G.P. Grabovetskaya, M.B. Ivanov, K.V. Ivanov, E.V. Naydenkin, Diffusion and plasticity of submicrocrystalline metals and alloys, Solid State Phenom. 94 (2003) 35-40.
DOI: 10.4028/www.scientific.net/ssp.94.35
Google Scholar