Thermodynamics and Kinetics of 1D Structural Elements and Stability of Nanocrystalline Materials

Article Preview

Abstract:

Grain boundary triple junctions are the structural elements of a polycrystal. Recently it was recognized that they can strongly impact the microstructural evolution, and therefore there engender new opportunities to control and to design the grain microstructure of fine-grained and nanocrystalline materials due to their effect on recovery, recrystallization and grain growth. The measurement of triple junction energy and mobility is thus of great importance. The line energy of a triple junction constructs an additional driving force of grain growth. Taking the triple line energy into account, a modified form of the Zener force and the Gibbs-Thomson relation can be derived to reveal the influence of the triple line energy on second phase particles and the change of the equilibrium concentration of vacancies in the vicinity of voids at a grain boundary. The impact of triple junctions on the sintering of nanopowders is discussed. The role of “grain boundary - free surface” triple lines in the adhesive contact formation between spherical nanoparticles is considered. It is shown that there is a critical value of the triple line energy above which the nanoparticles do not stick together. Based on this result, a new nanoparticle agglomeration mechanism is proposed, which accounts for the formation of large agglomerates of crystallographically aligned nanoparticles during the nanopowder processing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-195

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[2] W.W. Mullins, Acta Metall. 5 (1958) 414.

Google Scholar

[3] T. Radetic, F. Lancon, U. Dahmen, Phys. Rev. Lett., 89 (2002) 085502.

Google Scholar

[4] A. H. King. Mater. Sci. & Tech. 23 (2007) 505.

Google Scholar

[5] G. Gottstein and L. S. Shvindlerman, Grain Boundary Migration in Metals, CRC Press, Boca Raton, Florida, Second Edition, (2010).

Google Scholar

[6] U. Czubayko, V.G. Sursaeva, G. Gottstein, L.S. Shvindlerman, Acta Mater 46 (1998) 5863.

DOI: 10.1016/s1359-6454(98)00241-9

Google Scholar

[7] M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, G. Gottstein, Interface Sci. 7 (1999) 307.

DOI: 10.1023/a:1008781611991

Google Scholar

[8] M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, G. Gottstein, Acta Mater. 50 (2002) 1405.

Google Scholar

[9] A.H. King, Scripta Mater. 62 (2010) 889.

Google Scholar

[10] G. Gottstein, A.H. King, L.S. Shvindlerman, Acta Mater. 48 (2000) 397.

Google Scholar

[11] L.S. Shvindlerman, G. Gottstein, Z. Metallk. 95 (2004) 239.

Google Scholar

[12] G. Gottstein, L.S. Shvindlerman, Z. Metallk. 95 (2004) 219.

Google Scholar

[13] G. Gottstein, L.S. Shvindlerman, Scripta Mater. 52 (2005) 863.

Google Scholar

[14] L. A. Barrales-Morra, G. Gottstein, L. S. Shvindlerman, Acta Mater. 60 (2012) 546.

Google Scholar

[15] V.G. Sursaeva, B.B. Straumal, A.S. Gornakova, L.S. Shvindlerman, G. Gottstein, Acta Mater. 56 (2008) 2728.

DOI: 10.1016/j.actamat.2008.02.014

Google Scholar

[16] V.G. Sursaeva, G. Gottstein, L.S. Shvindlerman, Acta Mater. 59 (2011) 623.

Google Scholar

[17] G.S. Was, V. Thaveeprungsriporn, D.C. Crawford, JOMJ Miner. Met. Mater. Soc. 50 (1998) 44.

Google Scholar

[18] F.D. Fischer, J. Svoboda, K. Hackl, Acta Mater. 60 (2012) 4704.

Google Scholar

[19] P. Streitenberger, D. Moellner, Acta Mater. 59 (2011) 4235.

Google Scholar

[20] V.Y. Novikov, Materials Letters 84 (2012) 136.

Google Scholar

[21] J.W. Gibbs, Trans. Connect. Acad. Arts Sci. 3 (1874) 289.

Google Scholar

[22] D. McLean, Grain Boundaries in Metals, Clarendon Press, Oxford, 1957, p.49.

Google Scholar

[23] S.G. Srinivasan, J.W. Cahn, H. Jónsson, G. Kalonji, Acta Mater. 47 (1999) 2821.

Google Scholar

[24] H. Van Swygenhoven, Physical Review B 63 (2001) 134101.

Google Scholar

[25] G. Nishimura, M. Sc. Thesis, University of Toronto, (1973).

Google Scholar

[26] P. Fortier, G. Palumbo, G.D. Bruce, W.A. Miller, K.T. Aust, Scripta Metall. 25 (1991) 177.

Google Scholar

[27] H. Kim, Y. Xuan, P. D. Ye, R. Narayanan, A.H. King, Acta Mater. 57 (2009) 662.

Google Scholar

[28] A.V. Galina, V.E. Fradkov, L.S. Shvindlerman Fiz. Khim. Mekh. Pov. (Soviet Phys. Chem. Mech. Surf. ) [in Russian] 1 (1988) 100.

Google Scholar

[29] B. Zhao, J. Ch. Verhasselt, L.S. Shvindlerman, G. Gottstein, Acta Mater. 58 (2010) 5646.

Google Scholar

[30] B. Zhao, G. Gottstein, L.S. Shvindlerman, Acta Mater 59 (2011) 3510.

Google Scholar

[31] G. Gottstein, L.S. Shvindlerman, B. Zhao, Scripta Mater. 62 (2010) 914.

Google Scholar

[32] B. Zhao, A. Ziemons, L.S. Shvindlerman, G. Gottstein, Acta Mater 60 (2012) 811.

Google Scholar

[33] B. Zhao,L. Shvindlerman,G. Gottstein,Internat. J. Mater. Research 105(12) (2014) 1151-1158.

Google Scholar

[34] Z. Peng, Analysis of AFM images for triple line energy measurements, RWTH Aachen University, (2012).

Google Scholar

[35] O.K. Johnson, C.A. Schuh, Acta Mater. 61 (2013) 2863.

Google Scholar

[36] P. Keblinski, S.R. Phillpot, D. Wolf, H. Gleiter, Acta Mater. 45 (1997) 987.

Google Scholar

[37] B-K. Yoon, S-Y. Choi, T. Yamamoto, Y. Ikuhara, S-J. L. Kang, Acta Mater. 57 (2009) 2128.

Google Scholar

[38] L.S. Shvindlerman, G. Gottstein, Scripta Mater. 54 (2006) 1041.

Google Scholar

[39] C.S. Smith, Trans. AIME 175 (1948 175.

Google Scholar

[40] G. Gottstein, L.S. Shvindlerman, Scripta Mater. 63(11) (2010) 1089.

Google Scholar

[41] M. Lin, G. Gottstein, L.S. Shvindlerman, to be published.

Google Scholar

[42] L. S. Shvindlerman, Variational methods in the surface phenomena theory, in: Surface Phenomena in Melts and Powder-Metallurgy Processes [in Russian], 1963, pp.30-37.

Google Scholar

[43] A. Singhal, G. Skandan, A. Wang, N. Glumac, B.H. Kear, R.D. Hunt, Nano-Str. Mater. 4 (1999) 545.

Google Scholar

[44] H. Hahn, Adv. Eng. Mater. 5 (2003) 277.

Google Scholar

[45] Y. Raichman, M. Kazakevich, E. Rabkin, Y. Tsur, Adv. Mater. 18 (2006) (2028).

DOI: 10.1002/adma.200600538

Google Scholar

[46] A. Balakrishnan, P. Pizette, C.L. Martin, S.V. Joshi, B.P. Saha, Acta Mater. 58 (2010) 802.

Google Scholar

[47] K.L. Johnson, K. Kendall, A.D. Roberts, Proc. R. Soc. Lond. A 324 (1971) 301.

Google Scholar

[48] E. Rabkin, G. Gottstein, L.S. Shvindlerman, Scripta Mater. 65 (2011) 1101-1104.

Google Scholar