Analysis of Local and Global Segregation Occurring in Grain Boundary Diffusion

Article Preview

Abstract:

It is generally well recognized that in the course of a grain boundary (GB) diffusion experiment the diffusion of solute atoms in grain boundaries must exhibit a strong time-dependent segregation. But there has been no clear understanding of exactly how this time dependence develops. In this chapter, we review and analyse transient solute GB diffusion by means of the computer simulation technique of Lattice Monte Carlo (LMC). This technique has been successfully used on numerous occasions for the purposes of systematically studying the GB transition regimes that occur between the principal well-defined Harrison GB kinetics regimes (A, B and C-Types). Recently, the analysis using LMC has been extended to the case of solute GB diffusion when the segregation factor is independent of time. In the present paper, we analyse two cases of solute segregation in GB diffusion: first, where the solute atoms are homogeneously distributed along the tracer source plane but their mobility is not high at this plane; and the second, where the mobility of the solute atoms along the tracer source plane is comparable to their mobility along the GB. It is shown that the time dependence of the segregation can contribute significantly into the resulting values of the triple-product that is usually obtained experimentally in the Harrison Type-B kinetics regime.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-18

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Kaur, Y. Mishin and W. Gust: Fundamentals of Grain and Interphase Boundary Diffusion, Wiley, Chichester (1995).

Google Scholar

[2] I. Kaur, W. Gust and I. Kozma: Handbook of Grain and Interphase Boundary Diffusion Data, Ziegler Press, Stuttgart (1989).

Google Scholar

[3] Y. Mishin: Def. Diff. Forum, 194/199, (2001), 1113.

Google Scholar

[4] B. Bokstein: Def. and Diff. Forum, 297/301, (2010). 1268.

Google Scholar

[5] Y. Mishin et al.: Acta Materialia, 58, (2010), 1117.

Google Scholar

[6] B. Bokstein and A. Rodin, Chapter VI, Grain Boundary Diffusion and Grain Boundary Segregation in Metals and Alloys, in: Diffusion Foundations, 1, (2014), p.99.

DOI: 10.4028/www.scientific.net/df.1.99

Google Scholar

[7] S. V. Divinski and Chr. Herzig, J. Mater. Sci. 43, (2008) 3900.

Google Scholar

[8] S. V. Divinski and B. S. Bokstein, Defect Diffus. Forum 309/310, (2011) 1.

Google Scholar

[9] T. Surholt and Chr. Herzig, Acta Mater. 45, (1997) 3817.

Google Scholar

[10] T. Surholt, Yu. Mishin, Chr. Herzig, Phys. Rev, 50 B, (1994) 3577.

Google Scholar

[11] S. V. Divinski, M. Lohmann, Chr. Herzig, Acta Mat. 49, (2001) 249.

Google Scholar

[12] S. V. Divinski, J. Ribbe, G. Scmitz, Chr. Herzig, Acta Mat. 55, (2007) 3337.

Google Scholar

[13] S. Divinski, M. Lohmann, Chr. Herzig, Acta Mat. 52, (2004) 3973.

Google Scholar

[14] M. Lohmann, S. Divinski, Chr. Herzig, Z. Metallkde., 93, (2003) 1172.

Google Scholar

[15] M. Pinneau, B. Aufray, F. Cabane-Brouty and J. Cabane, Acta Mat., 31, (1983), 1047.

DOI: 10.1016/0001-6160(83)90200-6

Google Scholar

[16] S. V. Divinski, M. Lohmann, Chr. Herzig, Interface science, 11, (2003), 21.

Google Scholar

[17] Z. B. Wang, K. Lu, G. Wilde and S. Divinski, Appl. Phys. Let., 93 (2008), 131904.

Google Scholar

[18] L. G. Harrison, Trans. Faraday Soc. 57, (1961), 1191.

Google Scholar

[19] P. Neuhaus, Chr. Herzig, W. Gust, Acta Met., 37, (1989), 587.

Google Scholar

[20] A.R. Paul, R.P. Agarwala, Metal. Trans. 2, (1971), 2691.

Google Scholar

[21] A. Chaterjee, D.J. Fabian, Acta Met. 16, (1968), 789.

Google Scholar

[22] A. Wazzan, J. Appl. Phys, 36, (1965), 3596.

Google Scholar

[23] N. Dolgopolov, A. Rodin, A. Simanov, I. Gontar', Mat. Let., 62, (2008), 4477.

Google Scholar

[24] M. Lohmann, S. V. Divinski, Chr. Herzig, Z. Metallkunde, 96, (2005), 532.

Google Scholar

[25] M. Astahov, B. Bokstein, A. Rodin, M. Sinyaev: Izv. Vuzov, Non-ferr. Met. 4, (1998), 1.

Google Scholar

[26] A. Habner, Krist. Tech., 9, (1974), 1374.

Google Scholar

[27] H. Edelhoff, S. I. Prokofjev, S. V. Divinski, Scripta Mat, 64, (2011), 374.

Google Scholar

[28] S.J. Rothman, Chapter 1, in Diffusion in Crystalline Solids, G.E. Murch and A.S. Nowick, eds., Academic Press, Orlando (1984).

Google Scholar

[29] H. Mehrer, Diffusion in Solids: Fundamentals, Methods. Materials, Diffusion-Controlled Processes, Springer-Verlag, Berlin (2007).

Google Scholar

[30] I.V. Belova and G.E. Murch, Phil. Mag., 81, (2001), 2447.

Google Scholar

[31] S.V. Divinski, F. Hisker, Y. -S. Kang, J. -S. Lee and Chr. Herzig., Z. Metallk., 93, (2002), 256.

Google Scholar

[32] I.V. Belova and G.E. Murch, Def. Diff. Forum, 258/260, (2006), 483.

Google Scholar

[33] I.V. Belova and G.E. Murch, Def. Diff. Forum, 273/276, (2008), 425.

Google Scholar

[34] I.V. Belova and G.E. Murch, Def. Diff. Forum, 283/286, (2009), 697.

Google Scholar

[35] I.V. Belova and G.E. Murch, Phil. Mag. 89, (2009), 665.

Google Scholar

[36] S.V. Divinski, and L.N. Larikov, Def. Diff. Forum, 143/147 (1997), 1469.

Google Scholar

[37] I V Belova, T Fiedler, N Kulkarni and G E Murch, The Philosophical Magazine, 92, (2012), 1748.

Google Scholar

[38] I.V. Belova and G.E. Murch, Phil. Mag. 81, (2001), 2447.

Google Scholar

[39] I.V. Belova and G.E. Murch, Defect and Diffusion Forum, 218, (2003), 79.

Google Scholar

[40] E.W. Hart, Acta Metall. 5, (1957), 597.

Google Scholar

[41] J.R. Kalnin, E.A. Kotomin and J. Maier, J. Phys. Chem. Solids, 63, (2002), 449.

Google Scholar

[42] J.C. Maxwell-Garnett, Phil. Trans. Roy. Soc. London, 203, (1904), 386.

Google Scholar

[43] B.S. Bokshtein, I.A. Magidson and I.L. Svetlov, Phys. Met. Metallogr., 6(6), (1958), 81.

Google Scholar

[44] G.B. Gibbs, Phys. Stat. Solidi (a), 16, (1966), K27.

Google Scholar

[45] T. Suzuoka, Trans. Jap. Inst. Metals, 2, (1961), 25.

Google Scholar

[46] H.S. Levine and C.J. MacCallum, J. Appl. Phys., 31, (1960), 595.

Google Scholar

[47] I.V. Belova, G.E. Murch, T. Fiedler and A. Öchsner, Def. Diff. Forum, 283/286, (2009), 13.

Google Scholar

[48] I.V. Belova, G.E. Murch, T. Fiedler and A. Öchsner, Def. Diff. Forum, 279, (2008), 13.

Google Scholar