Modeling of Thermodynamic and Diffusion Properties in Ionic Materials

Article Preview

Abstract:

In this chapter, the modeling techniques of the thermodynamic and diffusion properties based on density functional theory in ionic materials, specifically oxide ceramic materials or ionic conductor materials are reviewed. Section 1 is the introduction of this book chapter. Section 2 is devoted to introduce the modeling methods of first-principles finite temperature thermodynamics, including quasi-harmonic phonon calculations and the Debye model. In the phonon model, the frozen phonon method, the linear response method, and the newly developed mixed-space method to model ionic polar materials are discussed. Section 3 introduces the general atomic diffusion theory, first-principles transition state calculations (double-well approach), and ab initio molecular dynamics simulations of the diffusion coefficients in ionic materials. Section 4 discusses some of the recent works of first-principles prediction of the thermodynamic and diffusion properties of ionic materials from our group and in the literature, with a focus on oxides for energy applications. Section 5 summarizes this book chapter.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] I. Chen, X. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature. 404 (2000) 168–71.

DOI: 10.1038/35004548

Google Scholar

[2] A.H. Chokshi, A.K. Mukherjee, T.G. Langdon, Superplasticity in advanced materials, Mater. Sci. Eng. R. 10 (1993) 237–274.

Google Scholar

[3] S.L. Shang, Y. Wang, Z.G. Mei, X.D. Hui, Z.K. Liu, Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): a comparative first-principles study, J. Mater. Chem. 22 (2012) 1142–1149.

DOI: 10.1039/c1jm13547c

Google Scholar

[4] Z. Zheng, H. Fang, F. Yang, Z. -K. Liu, Y. Wang, Amorphous LiLaTiO3 as Solid Electrolyte Material, J. Electrochem. Soc. 161 (2014) A473–A479.

DOI: 10.1149/2.006404jes

Google Scholar

[5] J.E. Saal, Y. Wang, S. Shang, Z. -K. Liu, Thermodynamic properties of Co3O4 and Sr6Co5O15 from first-principles., Inorg. Chem. 49 (2010) 10291–8.

Google Scholar

[6] R.M. Ormerod, Solid oxide fuel cells, Chem. Soc. Rev. 32 (2003) 17–28.

Google Scholar

[7] Y. Wang, J.E. Saal, P.P. Wu, J.J. Wang, S.L. Shang, Z.K. Liu, et al., First-principles lattice dynamics and heat capacity of BiFeO3, Acta Mater. 59 (2011) 4229–4234.

DOI: 10.1016/j.actamat.2011.03.047

Google Scholar

[8] R. Waser, M. Aono, Nanoionics-based resistive switching memories., Nat. Mater. 6 (2007) 833–40.

DOI: 10.1038/nmat2023

Google Scholar

[9] A. Sawa, Resistive switching in transition metal oxides, Mater. Today. 11 (2008) 28–36.

DOI: 10.1016/s1369-7021(08)70119-6

Google Scholar

[10] J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing., Nat. Nanotechnol. 8 (2013) 13–24.

Google Scholar

[11] A. Navrotsky, Progress and new directions in calorimetry: A 2014 perspective, J. Am. Ceram. Soc. 97 (2014) 3349–3359.

DOI: 10.1111/jace.13278

Google Scholar

[12] P. Heitjans, S. Indris, Diffusion and ionic conduction in nanocrystalline ceramics, J. Phys. Condens. Matter. 15 (2003) R1257–R1289.

DOI: 10.1088/0953-8984/15/30/202

Google Scholar

[13] Z.K. Liu, A Materials Research Paradigm Driven by Computation, Jom. 61 (10) (2009) 18–20.

Google Scholar

[14] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[15] Z.K. Liu, First-Principles Calculations and CALPHAD Modeling of Thermodynamics, J. Phase Equilibria Diffus. 30 (2009) 517–534.

DOI: 10.1007/s11669-009-9570-6

Google Scholar

[16] Y. Wang, Z.K. Liu, L.Q. Chen, Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations, Acta Mater. 52 (2004) 2665–2671.

DOI: 10.1016/j.actamat.2004.02.014

Google Scholar

[17] Y. Wang, L.G. Hector, H. Zhang, S.L. Shang, L.Q. Chen, Z.K. Liu, Thermodynamics of the Ce γ-α Transition: Density-functional study, Phys. Rev. B. 78 (2008) 104113.

Google Scholar

[18] M. Mantina, Y. Wang, R. Arroyave, L.Q. Chen, Z.K. Liu, C. Wolverton, First-principles calculation of self-diffusion coefficients, Phys. Rev. Lett. 100 (2008) 215901.

DOI: 10.1103/physrevlett.100.215901

Google Scholar

[19] Y. Wang, L.A. Zhang, S.L. Shang, Z.K. Liu, L.Q. Chen, Accurate calculations of phonon dispersion in CaF2 and CeO2, Phys. Rev. B. 88 (2013) 24304.

Google Scholar

[20] S.L. Shang, L.G. Hector, S.Q. Shi, Y. Qi, Y. Wang, Z.K. Liu, Lattice dynamics, thermodynamics and elastic properties of monoclinic Li2CO3 from density functional theory, Acta Mater. 60 (2012) 5204–5216.

DOI: 10.1016/j.actamat.2012.06.006

Google Scholar

[21] R.M. Martin, Electronic Structure: Basic Theory and Practical Methods, Book. (2004) 624.

Google Scholar

[22] P. Hohenberg, W. Kohn, The Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864.

DOI: 10.1103/physrev.136.b864

Google Scholar

[23] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[24] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169–11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[25] J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118 (2003) 8207–8215.

DOI: 10.1063/1.1564060

Google Scholar

[26] J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B. 23 (1981) 5048–5079.

DOI: 10.1103/physrevb.23.5048

Google Scholar

[27] A. Van de Walle, G. Ceder, The effect of lattice vibrations on substitutional alloy thermodynamics, Rev. Mod. Phys. 74 (2002) 11–45.

DOI: 10.1103/revmodphys.74.11

Google Scholar

[28] J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B. 45 (1992) 13244–13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[29] J. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple., Phys. Rev. Lett. 77 (1996) 3865–3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[30] A. van de Walle, G. Ceder, The effect of lattice vibrations on substitutional alloy thermodynamics, Rev. Mod. Phys. 74 (2002) 11–45.

DOI: 10.1103/revmodphys.74.11

Google Scholar

[31] S. Wei, M.Y. Chou, Ab initio calculation of force constants and full phonon dispersions, Phys. Rev. Lett. 69 (1992) 2799–2802.

DOI: 10.1103/physrevlett.69.2799

Google Scholar

[32] S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73 (2001) 515–562.

DOI: 10.1103/revmodphys.73.515

Google Scholar

[33] Y. Wang, S. -L. Shang, Z. -K. Liu, L. -Q. Chen, Mixed-space approach for calculation of vibration-induced dipole-dipole interactions, Phys. Rev. B. 85 (2012) 224303.

DOI: 10.1103/physrevb.85.224303

Google Scholar

[34] Y. Wang, J.J. Wang, W.Y. Wang, Z.G. Mei, S.L. Shang, L.Q. Chen, et al., A mixed-space approach to first-principles calculations of phonon frequencies for polar materials., J. Phys. Condens. Matter. 22 (2010) 202201.

DOI: 10.1088/0953-8984/22/20/202201

Google Scholar

[35] Y. Wang, S. -L. Shang, H. Fang, Z. -K. Liu, L. -Q. Chen, First-principles calculations of lattice dynamics and thermal properties of polar solids, Npj Comput. Mater. (2016) In Press.

DOI: 10.1038/npjcompumats.2016.6

Google Scholar

[36] R.P. Feynman, Forces in molecules, Phys. Rev. 56 (1939) 340–343.

Google Scholar

[37] S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73 (2001) 515–562.

DOI: 10.1103/revmodphys.73.515

Google Scholar

[38] Y. Wang, J.E. Saal, P. Wu, J. Wang, S. Shang, Z.K. Liu, et al., First-principles lattice dynamics and heat capacity of BiFeO3, Acta Mater. 59 (2011) 4229–4234.

DOI: 10.1016/j.actamat.2011.03.047

Google Scholar

[39] Y. Wang, L.Q. Chen, Z.K. Liu, YPHON: A package for calculating phonons of polar materials, Comput. Phys. Commun. 185 (2014) 2950–2968.

DOI: 10.1016/j.cpc.2014.06.023

Google Scholar

[40] M.J.L. Sangster, G. Peckham, D.H. Saunderson, Lattice dynamics of magnesium oxide, J. Phys. C. 3 (1970) 1026–1036.

DOI: 10.1088/0022-3719/3/5/017

Google Scholar

[41] Y. Wang, Z.K. Liu, L.Q. Chen, Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations, Acta Mater. 52 (2004) 2665–2671.

DOI: 10.1016/j.actamat.2004.02.014

Google Scholar

[42] S.L. Shang, Y. Wang, D.E. Kim, Z.K. Liu, First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al, Comput. Mater. Sci. 47 (2010) 1040–1048.

DOI: 10.1016/j.commatsci.2009.12.006

Google Scholar

[43] V.L. Moruzzi, J.F. Janak, K. Schwarz, Calculated thermal properties of metals, Phys. Rev. B. 37 (1988) 790.

DOI: 10.1103/physrevb.37.790

Google Scholar

[44] M.A. Blanco, E. Francisco, V. Luaña, GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158 (2004) 57–72.

DOI: 10.1016/j.comphy.2003.12.001

Google Scholar

[45] X.L. Liu, B.K. Vanleeuwen, S.L. Shang, Y. Du, Z.K. Liu, On the scaling factor in Debye-Grüneisen model: A case study of the Mg-Zn binary system, Comput. Mater. Sci. 98 (2015) 34–41.

DOI: 10.1016/j.commatsci.2014.10.056

Google Scholar

[46] G. Grimvall, B. Magyari-Koepe, V. Ozolins, K.A. Persson, Lattice instabilities in metallic elements, Rev. Mod. Phys. 84 (2012) 945–986.

DOI: 10.1103/revmodphys.84.945

Google Scholar

[47] G.K. White, M.L. Minges, Thermophysical Properties of Some Key Solids, Int. J. Thermophys. 15 (1994) 1333–1343.

DOI: 10.1007/bf01458841

Google Scholar

[48] A. Van der Ven, G. Ceder, M. Asta, P. Tepesch, First-principles theory of ionic diffusion with nondilute carriers, Phys. Rev. B. 64 (2001) 1–17.

DOI: 10.1103/physrevb.64.184307

Google Scholar

[49] Y. Wang, W.D. Richards, S.P. Ong, L.J. Miara, J.C. Kim, Y. Mo, et al., Design principles for solid-state lithium superionic conductors, Nat Mater. (2015) 1–23.

DOI: 10.1038/nmat4369

Google Scholar

[50] M. Mantina, Y. Wang, R. Arroyave, S.L. Shang, L.Q. Chen, Z.K. Liu, A first-principles approach to transition states of diffusion., J. Phys. Condens. Matter. 24 (2012) 305402.

DOI: 10.1088/0953-8984/24/30/305402

Google Scholar

[51] Y. -M. Chiang, D.P. Birnie, W.D. Kingery, Physical Ceramics, (1997).

Google Scholar

[52] R.A. De Souza, Oxygen Diffusion in SrTiO3 and Related Perovskite Oxides, Adv. Funct. Mater. 25 (2015) 6326–6342.

DOI: 10.1002/adfm.201500827

Google Scholar

[53] M. Youssef, B. Yildiz, Predicting self-diffusion in metal oxides from first principles: The case of oxygen in tetragonal ZrO2, Phys. Rev. B. 89 (2014) 024105.

DOI: 10.1103/physrevb.89.024105

Google Scholar

[54] G.H. Vineyard, Frequency factors and isotope effects in solid state rate processes, J. Phys. Chem. Solids. 3 (1957) 121–127.

Google Scholar

[55] H. Eyring, The Activated Complex in Chemical Reactions, J. Chem. Phys. 3 (1935) 107–115.

Google Scholar

[56] H. JÓNSSON, G. MILLS, K.W. JACOBSEN, Nudged elastic band method for finding minimum energy paths of transitions, in: Class. Quantum Dyn. Condens. Phase Simulations, 1998: p.385–404.

DOI: 10.1142/9789812839664_0016

Google Scholar

[57] G. Henkelman, B.P. Uberuaga, H. Jónsson, Climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904.

DOI: 10.1063/1.1329672

Google Scholar

[58] B. -C. Zhou, S.L. Shang, Y. Wang, Z. -K. Liu, Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study, Acta Mater. 103 (2016) 573–586.

DOI: 10.1016/j.actamat.2015.10.010

Google Scholar

[59] G. Boisvert, N. Mousseau, L.J. Lewis, Surface diffusion coefficients by thermodynamic integration: Cu on Cu(100), Phys. Rev. B. 58 (1998) 12667–12670.

DOI: 10.1103/physrevb.58.12667

Google Scholar

[60] P.E. Blöchl, E. Smargiassi, R. Car, D.B. Laks, W. Andreoni, S.T. Pantelides, First-principles calculations of self-diffusion constants in silicon, Phys. Rev. Lett. 70 (1993) 2435–2438.

DOI: 10.1103/physrevlett.70.2435

Google Scholar

[61] P.E. Blöchl, C.G. Van De Walle, S.T. Pantelides, First-principles calculations of diffusion coefficients: Hydrogen in silicon, Phys. Rev. Lett. 64 (1990) 1401–1404.

DOI: 10.1103/physrevlett.64.1401

Google Scholar

[62] W. Frank, U. Breier, C. Elsässer, M. Fähnle, First-Principles Calculations of Absolute Concentrations and Self-Diffusion Constants of Vacancies in Lithium, Phys. Rev. Lett. 77 (1996) 518–521.

DOI: 10.1103/physrevlett.77.518

Google Scholar

[63] J.A. Van Vechten, Simple ballistic model for vacancy migration, Phys. Rev. B. 12 (1975) 1247.

DOI: 10.1103/physrevb.12.1247

Google Scholar

[64] T.W. Dobson, J.F. Wager, J.A. Van Vechten, Entropy of migration for atomic hopping, Phys. Rev. B. 40 (1989) 2962.

DOI: 10.1103/physrevb.40.2962

Google Scholar

[65] J.F. Wager, A statistical thermodynamic derivation of the ballistic model for vacancy migration, Philos. Mag. A. 63 (1991) 1315–1326.

DOI: 10.1080/01418619108205585

Google Scholar

[66] Y. Wang, R. Ahuja, M.C. Qian, B. Johansson, Accurate quantum mechanical treatment of phonon instability: body-centred cubic zirconium, J. Phys. Condens. Matter. 14 (2002) L695.

DOI: 10.1088/0953-8984/14/43/101

Google Scholar

[67] R. Car, M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Phys. Rev. Lett. 55 (1985) 2471–2474.

DOI: 10.1103/physrevlett.55.2471

Google Scholar

[68] H.Z. Fang, Y. Wang, S.L. Shang, Z.K. Liu, Nature of ferroelectric-paraelectric phase transition and origin of negative thermal expansion in PbTiO3, Phys. Rev. B. 91 (2015) 24104.

Google Scholar

[69] K. Parlinski, Z. Li, Y. Kawazoe, First-Principles Determination of the Soft Mode in Cubic ZrO2, Phys. Rev. Lett. 78 (1997) 4063–4066.

DOI: 10.1103/physrevlett.78.4063

Google Scholar

[70] C. Kittel, Introduction to solid state physics, (2005).

Google Scholar

[71] A. Van der Ven, H.C. Yu, G. Ceder, K. Thornton, Vacancy mediated substitutional diffusion in binary crystalline solids, Prog. Mater. Sci. 55 (2010) 61–105.

DOI: 10.1016/j.pmatsci.2009.08.001

Google Scholar

[72] A. Van der Ven, J.C. Thomas, Q. Xu, B. Swoboda, D. Morgan, Nondilute diffusion from first principles: Li diffusion in LixTiS2, Phys. Rev. B. 78 (2008) 104306.

DOI: 10.1103/physrevb.78.104306

Google Scholar

[73] M. Youssef, B. Yildiz, Intrinsic point-defect equilibria in tetragonal ZrO2: Density functional theory analysis with finite-temperature effects, Phys. Rev. B. 86 (2012) 144109.

DOI: 10.1103/physrevb.86.144109

Google Scholar

[74] H.Z. Fang, W.Y. Wang, P.D. Jablonski, Z.K. Liu, Effects of reactive elements on the structure and diffusivity of liquid chromia: An ab initio molecular dynamics study, Phys. Rev. B. 85 (2012) 014207.

DOI: 10.1103/physrevb.85.014207

Google Scholar

[75] J. Bhattacharya, A. Van Der Ven, First-principles study of competing mechanisms of nondilute Li diffusion in spinel LixTiS2, Phys. Rev. B. 83 (2011) 144302.

Google Scholar