[1]
I. Chen, X. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature. 404 (2000) 168–71.
DOI: 10.1038/35004548
Google Scholar
[2]
A.H. Chokshi, A.K. Mukherjee, T.G. Langdon, Superplasticity in advanced materials, Mater. Sci. Eng. R. 10 (1993) 237–274.
Google Scholar
[3]
S.L. Shang, Y. Wang, Z.G. Mei, X.D. Hui, Z.K. Liu, Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): a comparative first-principles study, J. Mater. Chem. 22 (2012) 1142–1149.
DOI: 10.1039/c1jm13547c
Google Scholar
[4]
Z. Zheng, H. Fang, F. Yang, Z. -K. Liu, Y. Wang, Amorphous LiLaTiO3 as Solid Electrolyte Material, J. Electrochem. Soc. 161 (2014) A473–A479.
DOI: 10.1149/2.006404jes
Google Scholar
[5]
J.E. Saal, Y. Wang, S. Shang, Z. -K. Liu, Thermodynamic properties of Co3O4 and Sr6Co5O15 from first-principles., Inorg. Chem. 49 (2010) 10291–8.
Google Scholar
[6]
R.M. Ormerod, Solid oxide fuel cells, Chem. Soc. Rev. 32 (2003) 17–28.
Google Scholar
[7]
Y. Wang, J.E. Saal, P.P. Wu, J.J. Wang, S.L. Shang, Z.K. Liu, et al., First-principles lattice dynamics and heat capacity of BiFeO3, Acta Mater. 59 (2011) 4229–4234.
DOI: 10.1016/j.actamat.2011.03.047
Google Scholar
[8]
R. Waser, M. Aono, Nanoionics-based resistive switching memories., Nat. Mater. 6 (2007) 833–40.
DOI: 10.1038/nmat2023
Google Scholar
[9]
A. Sawa, Resistive switching in transition metal oxides, Mater. Today. 11 (2008) 28–36.
DOI: 10.1016/s1369-7021(08)70119-6
Google Scholar
[10]
J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing., Nat. Nanotechnol. 8 (2013) 13–24.
Google Scholar
[11]
A. Navrotsky, Progress and new directions in calorimetry: A 2014 perspective, J. Am. Ceram. Soc. 97 (2014) 3349–3359.
DOI: 10.1111/jace.13278
Google Scholar
[12]
P. Heitjans, S. Indris, Diffusion and ionic conduction in nanocrystalline ceramics, J. Phys. Condens. Matter. 15 (2003) R1257–R1289.
DOI: 10.1088/0953-8984/15/30/202
Google Scholar
[13]
Z.K. Liu, A Materials Research Paradigm Driven by Computation, Jom. 61 (10) (2009) 18–20.
Google Scholar
[14]
W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133.
DOI: 10.1103/physrev.140.a1133
Google Scholar
[15]
Z.K. Liu, First-Principles Calculations and CALPHAD Modeling of Thermodynamics, J. Phase Equilibria Diffus. 30 (2009) 517–534.
DOI: 10.1007/s11669-009-9570-6
Google Scholar
[16]
Y. Wang, Z.K. Liu, L.Q. Chen, Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations, Acta Mater. 52 (2004) 2665–2671.
DOI: 10.1016/j.actamat.2004.02.014
Google Scholar
[17]
Y. Wang, L.G. Hector, H. Zhang, S.L. Shang, L.Q. Chen, Z.K. Liu, Thermodynamics of the Ce γ-α Transition: Density-functional study, Phys. Rev. B. 78 (2008) 104113.
Google Scholar
[18]
M. Mantina, Y. Wang, R. Arroyave, L.Q. Chen, Z.K. Liu, C. Wolverton, First-principles calculation of self-diffusion coefficients, Phys. Rev. Lett. 100 (2008) 215901.
DOI: 10.1103/physrevlett.100.215901
Google Scholar
[19]
Y. Wang, L.A. Zhang, S.L. Shang, Z.K. Liu, L.Q. Chen, Accurate calculations of phonon dispersion in CaF2 and CeO2, Phys. Rev. B. 88 (2013) 24304.
Google Scholar
[20]
S.L. Shang, L.G. Hector, S.Q. Shi, Y. Qi, Y. Wang, Z.K. Liu, Lattice dynamics, thermodynamics and elastic properties of monoclinic Li2CO3 from density functional theory, Acta Mater. 60 (2012) 5204–5216.
DOI: 10.1016/j.actamat.2012.06.006
Google Scholar
[21]
R.M. Martin, Electronic Structure: Basic Theory and Practical Methods, Book. (2004) 624.
Google Scholar
[22]
P. Hohenberg, W. Kohn, The Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864.
DOI: 10.1103/physrev.136.b864
Google Scholar
[23]
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50.
DOI: 10.1016/0927-0256(96)00008-0
Google Scholar
[24]
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169–11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[25]
J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118 (2003) 8207–8215.
DOI: 10.1063/1.1564060
Google Scholar
[26]
J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B. 23 (1981) 5048–5079.
DOI: 10.1103/physrevb.23.5048
Google Scholar
[27]
A. Van de Walle, G. Ceder, The effect of lattice vibrations on substitutional alloy thermodynamics, Rev. Mod. Phys. 74 (2002) 11–45.
DOI: 10.1103/revmodphys.74.11
Google Scholar
[28]
J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B. 45 (1992) 13244–13249.
DOI: 10.1103/physrevb.45.13244
Google Scholar
[29]
J. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple., Phys. Rev. Lett. 77 (1996) 3865–3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[30]
A. van de Walle, G. Ceder, The effect of lattice vibrations on substitutional alloy thermodynamics, Rev. Mod. Phys. 74 (2002) 11–45.
DOI: 10.1103/revmodphys.74.11
Google Scholar
[31]
S. Wei, M.Y. Chou, Ab initio calculation of force constants and full phonon dispersions, Phys. Rev. Lett. 69 (1992) 2799–2802.
DOI: 10.1103/physrevlett.69.2799
Google Scholar
[32]
S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73 (2001) 515–562.
DOI: 10.1103/revmodphys.73.515
Google Scholar
[33]
Y. Wang, S. -L. Shang, Z. -K. Liu, L. -Q. Chen, Mixed-space approach for calculation of vibration-induced dipole-dipole interactions, Phys. Rev. B. 85 (2012) 224303.
DOI: 10.1103/physrevb.85.224303
Google Scholar
[34]
Y. Wang, J.J. Wang, W.Y. Wang, Z.G. Mei, S.L. Shang, L.Q. Chen, et al., A mixed-space approach to first-principles calculations of phonon frequencies for polar materials., J. Phys. Condens. Matter. 22 (2010) 202201.
DOI: 10.1088/0953-8984/22/20/202201
Google Scholar
[35]
Y. Wang, S. -L. Shang, H. Fang, Z. -K. Liu, L. -Q. Chen, First-principles calculations of lattice dynamics and thermal properties of polar solids, Npj Comput. Mater. (2016) In Press.
DOI: 10.1038/npjcompumats.2016.6
Google Scholar
[36]
R.P. Feynman, Forces in molecules, Phys. Rev. 56 (1939) 340–343.
Google Scholar
[37]
S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73 (2001) 515–562.
DOI: 10.1103/revmodphys.73.515
Google Scholar
[38]
Y. Wang, J.E. Saal, P. Wu, J. Wang, S. Shang, Z.K. Liu, et al., First-principles lattice dynamics and heat capacity of BiFeO3, Acta Mater. 59 (2011) 4229–4234.
DOI: 10.1016/j.actamat.2011.03.047
Google Scholar
[39]
Y. Wang, L.Q. Chen, Z.K. Liu, YPHON: A package for calculating phonons of polar materials, Comput. Phys. Commun. 185 (2014) 2950–2968.
DOI: 10.1016/j.cpc.2014.06.023
Google Scholar
[40]
M.J.L. Sangster, G. Peckham, D.H. Saunderson, Lattice dynamics of magnesium oxide, J. Phys. C. 3 (1970) 1026–1036.
DOI: 10.1088/0022-3719/3/5/017
Google Scholar
[41]
Y. Wang, Z.K. Liu, L.Q. Chen, Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations, Acta Mater. 52 (2004) 2665–2671.
DOI: 10.1016/j.actamat.2004.02.014
Google Scholar
[42]
S.L. Shang, Y. Wang, D.E. Kim, Z.K. Liu, First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al, Comput. Mater. Sci. 47 (2010) 1040–1048.
DOI: 10.1016/j.commatsci.2009.12.006
Google Scholar
[43]
V.L. Moruzzi, J.F. Janak, K. Schwarz, Calculated thermal properties of metals, Phys. Rev. B. 37 (1988) 790.
DOI: 10.1103/physrevb.37.790
Google Scholar
[44]
M.A. Blanco, E. Francisco, V. Luaña, GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158 (2004) 57–72.
DOI: 10.1016/j.comphy.2003.12.001
Google Scholar
[45]
X.L. Liu, B.K. Vanleeuwen, S.L. Shang, Y. Du, Z.K. Liu, On the scaling factor in Debye-Grüneisen model: A case study of the Mg-Zn binary system, Comput. Mater. Sci. 98 (2015) 34–41.
DOI: 10.1016/j.commatsci.2014.10.056
Google Scholar
[46]
G. Grimvall, B. Magyari-Koepe, V. Ozolins, K.A. Persson, Lattice instabilities in metallic elements, Rev. Mod. Phys. 84 (2012) 945–986.
DOI: 10.1103/revmodphys.84.945
Google Scholar
[47]
G.K. White, M.L. Minges, Thermophysical Properties of Some Key Solids, Int. J. Thermophys. 15 (1994) 1333–1343.
DOI: 10.1007/bf01458841
Google Scholar
[48]
A. Van der Ven, G. Ceder, M. Asta, P. Tepesch, First-principles theory of ionic diffusion with nondilute carriers, Phys. Rev. B. 64 (2001) 1–17.
DOI: 10.1103/physrevb.64.184307
Google Scholar
[49]
Y. Wang, W.D. Richards, S.P. Ong, L.J. Miara, J.C. Kim, Y. Mo, et al., Design principles for solid-state lithium superionic conductors, Nat Mater. (2015) 1–23.
DOI: 10.1038/nmat4369
Google Scholar
[50]
M. Mantina, Y. Wang, R. Arroyave, S.L. Shang, L.Q. Chen, Z.K. Liu, A first-principles approach to transition states of diffusion., J. Phys. Condens. Matter. 24 (2012) 305402.
DOI: 10.1088/0953-8984/24/30/305402
Google Scholar
[51]
Y. -M. Chiang, D.P. Birnie, W.D. Kingery, Physical Ceramics, (1997).
Google Scholar
[52]
R.A. De Souza, Oxygen Diffusion in SrTiO3 and Related Perovskite Oxides, Adv. Funct. Mater. 25 (2015) 6326–6342.
DOI: 10.1002/adfm.201500827
Google Scholar
[53]
M. Youssef, B. Yildiz, Predicting self-diffusion in metal oxides from first principles: The case of oxygen in tetragonal ZrO2, Phys. Rev. B. 89 (2014) 024105.
DOI: 10.1103/physrevb.89.024105
Google Scholar
[54]
G.H. Vineyard, Frequency factors and isotope effects in solid state rate processes, J. Phys. Chem. Solids. 3 (1957) 121–127.
Google Scholar
[55]
H. Eyring, The Activated Complex in Chemical Reactions, J. Chem. Phys. 3 (1935) 107–115.
Google Scholar
[56]
H. JÓNSSON, G. MILLS, K.W. JACOBSEN, Nudged elastic band method for finding minimum energy paths of transitions, in: Class. Quantum Dyn. Condens. Phase Simulations, 1998: p.385–404.
DOI: 10.1142/9789812839664_0016
Google Scholar
[57]
G. Henkelman, B.P. Uberuaga, H. Jónsson, Climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904.
DOI: 10.1063/1.1329672
Google Scholar
[58]
B. -C. Zhou, S.L. Shang, Y. Wang, Z. -K. Liu, Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study, Acta Mater. 103 (2016) 573–586.
DOI: 10.1016/j.actamat.2015.10.010
Google Scholar
[59]
G. Boisvert, N. Mousseau, L.J. Lewis, Surface diffusion coefficients by thermodynamic integration: Cu on Cu(100), Phys. Rev. B. 58 (1998) 12667–12670.
DOI: 10.1103/physrevb.58.12667
Google Scholar
[60]
P.E. Blöchl, E. Smargiassi, R. Car, D.B. Laks, W. Andreoni, S.T. Pantelides, First-principles calculations of self-diffusion constants in silicon, Phys. Rev. Lett. 70 (1993) 2435–2438.
DOI: 10.1103/physrevlett.70.2435
Google Scholar
[61]
P.E. Blöchl, C.G. Van De Walle, S.T. Pantelides, First-principles calculations of diffusion coefficients: Hydrogen in silicon, Phys. Rev. Lett. 64 (1990) 1401–1404.
DOI: 10.1103/physrevlett.64.1401
Google Scholar
[62]
W. Frank, U. Breier, C. Elsässer, M. Fähnle, First-Principles Calculations of Absolute Concentrations and Self-Diffusion Constants of Vacancies in Lithium, Phys. Rev. Lett. 77 (1996) 518–521.
DOI: 10.1103/physrevlett.77.518
Google Scholar
[63]
J.A. Van Vechten, Simple ballistic model for vacancy migration, Phys. Rev. B. 12 (1975) 1247.
DOI: 10.1103/physrevb.12.1247
Google Scholar
[64]
T.W. Dobson, J.F. Wager, J.A. Van Vechten, Entropy of migration for atomic hopping, Phys. Rev. B. 40 (1989) 2962.
DOI: 10.1103/physrevb.40.2962
Google Scholar
[65]
J.F. Wager, A statistical thermodynamic derivation of the ballistic model for vacancy migration, Philos. Mag. A. 63 (1991) 1315–1326.
DOI: 10.1080/01418619108205585
Google Scholar
[66]
Y. Wang, R. Ahuja, M.C. Qian, B. Johansson, Accurate quantum mechanical treatment of phonon instability: body-centred cubic zirconium, J. Phys. Condens. Matter. 14 (2002) L695.
DOI: 10.1088/0953-8984/14/43/101
Google Scholar
[67]
R. Car, M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Phys. Rev. Lett. 55 (1985) 2471–2474.
DOI: 10.1103/physrevlett.55.2471
Google Scholar
[68]
H.Z. Fang, Y. Wang, S.L. Shang, Z.K. Liu, Nature of ferroelectric-paraelectric phase transition and origin of negative thermal expansion in PbTiO3, Phys. Rev. B. 91 (2015) 24104.
Google Scholar
[69]
K. Parlinski, Z. Li, Y. Kawazoe, First-Principles Determination of the Soft Mode in Cubic ZrO2, Phys. Rev. Lett. 78 (1997) 4063–4066.
DOI: 10.1103/physrevlett.78.4063
Google Scholar
[70]
C. Kittel, Introduction to solid state physics, (2005).
Google Scholar
[71]
A. Van der Ven, H.C. Yu, G. Ceder, K. Thornton, Vacancy mediated substitutional diffusion in binary crystalline solids, Prog. Mater. Sci. 55 (2010) 61–105.
DOI: 10.1016/j.pmatsci.2009.08.001
Google Scholar
[72]
A. Van der Ven, J.C. Thomas, Q. Xu, B. Swoboda, D. Morgan, Nondilute diffusion from first principles: Li diffusion in LixTiS2, Phys. Rev. B. 78 (2008) 104306.
DOI: 10.1103/physrevb.78.104306
Google Scholar
[73]
M. Youssef, B. Yildiz, Intrinsic point-defect equilibria in tetragonal ZrO2: Density functional theory analysis with finite-temperature effects, Phys. Rev. B. 86 (2012) 144109.
DOI: 10.1103/physrevb.86.144109
Google Scholar
[74]
H.Z. Fang, W.Y. Wang, P.D. Jablonski, Z.K. Liu, Effects of reactive elements on the structure and diffusivity of liquid chromia: An ab initio molecular dynamics study, Phys. Rev. B. 85 (2012) 014207.
DOI: 10.1103/physrevb.85.014207
Google Scholar
[75]
J. Bhattacharya, A. Van Der Ven, First-principles study of competing mechanisms of nondilute Li diffusion in spinel LixTiS2, Phys. Rev. B. 83 (2011) 144302.
Google Scholar