p.1
p.31
p.80
p.109
p.129
Transport of Ions in Salt-in-Polymer Membranes
Abstract:
Replacing traditional liquid electrolytes by polymers will significantly improve electrical energy storage technologies. However, the ion transport mechanism in polymers has been one of the main barriers to further improvement in Li-ion batteries and is still not completely clarified. In an effort to gain a better understanding of the conduction phenomena in electrolytes, a comprehensive survey of all transport mechanism including solvation, segmental motion and hopping, is presented here. Included are a survey of the fundamentals of diffusion and conductivity in polymer electrolytes; recent developments in Li salts; and a detailed discussion about ion transport mechanism with representative references.
Info:
Periodical:
Pages:
129-155
Citation:
Online since:
July 2016
Authors:
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, Å. Wendsjö, Crystallinity and morphology of PVdF–HFP-based gel electrolytes, Polymer. 42 (2001) 1407–1416.
[2] A. Abouimrane, J. Ding, I.J. Davidson, Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations, J. Power Sources. 189 (2009) 693–696.
[3] A.L. Agapov, A.P. Sokolov, Decoupling Ionic Conductivity from Structural Relaxation: A Way to Solid Polymer Electrolytes?, Macromolecules. 44 (2011) 4410–4414.
DOI: 10.1021/ma2001096
[4] H.R. Allcock, M.E. Napierala, D.L. Olmeijer, S.A. Best, K.M. Merz, Ionic Conduction in Polyphosphazene Solids and Gels: 13C, 31P, and 15N NMR Spectroscopy and Molecular Dynamics Simulations, Macromolecules. 32 (1999) 732–741.
DOI: 10.1021/ma980665+
[5] J.L. Allen, Q. Ly, D. Seo, P. Boyle, W. Henderson, Solvent-LiBF4 Phase Diagrams, Ionic Association and Solubility - Cyclic Carbonates and Carboxylic Esters, Meet. Abstr. MA2011-02 (2011) 1393–1393.
[6] M. Amereller, T. Schedlbauer, D. Moosbauer, C. Schreiner, C. Stock, F. Wudy, S. Zugmann, H. Hammer, A. Maurer, R.M. Gschwind, H. -D. Wiemhöfer, M. Winter, H.J. Gores, Electrolytes for lithium and lithium ion batteries: From synthesis of novel lithium borates and ionic liquids to development of novel measurement methods, Prog. Solid State Chem. 42 (2014).
[7] C. Angell, Fast ion motion in glassy and amorphous materials, Solid State Ion. 9-10(1983)3–16.
[8] G.B. Appetecchi, D. Zane, B. Scrosati, PEO-Based Electrolyte Membranes Based on LiBC[sub 4]O[sub 8] Salt, J. Electrochem. Soc. 151 (2004) A1369.
DOI: 10.1149/1.1774488
[9] V. Aravindan, J. Gnanaraj, S. Madhavi, H. -K. Liu, Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries, Chem. – Eur. J. 17 (2011) 14326–14346.
[10] M. Armand, Polymer solid electrolytes - an overview, Solid State Ion. 9-10 (1983) 745–754.
[11] M. Armand, The history of polymer electrolytes, Solid State Ion. 69 (1994) 309–319.
[12] D. Aurbach, A. Zaban, A. Schechter, Y. Ein‐Eli, E. Zinigrad, B. Markovsky, The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries I . Li Metal Anodes, J. Electrochem. Soc. 142 (1995) 2873–2882.
DOI: 10.1149/1.2048658
[13] C.G. Barlowz, Reaction of Water with Hexafluorophosphates and with Li Bis(perfluoroethylsulfonyl)imide Salt, Electrochem. Solid-State Lett. 2 (1999) 362.
DOI: 10.1149/1.1390838
[14] J. Barthel, A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes, J. Electrochem. Soc. 142 (1995) 2527.
DOI: 10.1149/1.2050048
[15] C. Berthier, W. Gorecki, M. Minier, M.B. Armand, J.M. Chabagno, P. Rigaud, Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts, Solid State Ion. 11 (1983) 91–95.
[16] A. Blazejczyk, W. Wieczorek, R. Kovarsky, D. Golodnitsky, E. Peled, L.G. Scanlon, G.B. Appetecchi, B. Scrosati, Novel solid polymer electrolytes with single lithium-ion transport, J. Electrochem. Soc. 151 (2004) A1762–A1766.
DOI: 10.1149/1.1793714
[17] P.M. Blonsky, D.F. Shriver, P. Austin, H.R. Allcock, Polyphosphazene solid electrolytes, J. Am. Chem. Soc. 106 (1984) 6854–6855.
DOI: 10.1021/ja00334a071
[18] J.O. Bockris, A.K.N. Reddy, Modern electrochemistry, Kluwer Academic Publishers, New York, (2002).
[19] O. Borodin, M. Olguin, P. Ganesh, P.R.C. Kent, J.L. Allen, W.A. Henderson, Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry, Phys Chem Chem Phys. 18 (2016) 164–175.
DOI: 10.1039/c5cp05121e
[20] T. Böttcher, B. Duda, N. Kalinovich, O. Kazakova, M. Ponomarenko, K. Vlasov, M. Winter, G. -V. Röschenthaler, Syntheses of novel delocalized cations and fluorinated anions, new fluorinated solvents and additives for lithium ion batteries, Prog. Solid State Chem. 42 (2014).
[21] V. Chandrasekhar, Polymer Solid Electrolytes: Synthesis and Structure, in: V. Bellon-Maurel, A. Calmon-Decriaud, V. Chandrasekhar, N. Hadjichristidis, J.W. Mays, S. Pispas, M. Pitsikalis, F. Silvestre (Eds. ), Blockcopolymers - Polyelectrolytes - Biodegrad., Springer Berlin Heidelberg, 1998: p.139.
[22] S.Z.D. Cheng, J.S. Barley, P.A. Giusti, Spherulite formation in poly(ethylene oxide) mixtures, Polymer. 31 (1990) 845–849.
[23] A.M. Christie, S.J. Lilley, E. Staunton, Y.G. Andreev, P.G. Bruce, Increasing the conductivity of crystalline polymer electrolytes, Nature. 433 (2005) 50–53.
DOI: 10.1038/nature03186
[24] Cznotka, E., Jeschke, S., Vettikuzha, P., Wiemhöfer, H. -D., Semi-interpenetrating polymer network of poly(methyl methacrylate) and ether-modified polysiloxane, Submitted. (n. d. ).
[25] F.B. Dias, L. Plomp, J.B.J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries, J. Power Sources. 88 (2000) 169–191.
[26] V. Di Noto, S. Lavina, G.A. Giffin, E. Negro, B. Scrosati, Polymer electrolytes: Present, past and future, Electrochimica Acta. 57 (2011) 4–13.
[27] G.P. Dukhanin, S.A. Dumler, A.N. Sablin, I.A. Novakov, Solid polymeric electrolyte based on poly(ethylene carbonate)-lithium perchlorate system, Russ. J. Appl. Chem. 82 (2009) 243–246.
[28] H.A. Every, F. Zhou, M. Forsyth, D.R. MacFarlane, Lithium ion mobility in poly(vinyl alcohol) based polymer electrolytes as determined by 7Li NMR spectroscopy, Electrochimica Acta. 43 (1998) 1465–1469.
[29] F. Fan, Y. Wang, A.P. Sokolov, Ionic Transport, Microphase Separation, and Polymer Relaxation in Poly(propylene glycol) and Lithium Perchlorate Mixtures, Macromolecules. 46 (2013) 9380–9389.
DOI: 10.1021/ma401238k
[30] A. Ferry, L. Edman, M. Forsyth, D.R. MacFarlane, J. Sun, Connectivity, ionic interactions, and migration in a fast-ion-conducting polymer-in-salt electrolyte based on poly(acrylonitrile) and LiCF[sub 3]SO[sub 3], J. Appl. Phys. 86 (1999) 2346.
DOI: 10.1063/1.371053
[31] A. Ferry, L. Edman, M. Forsyth, D.R. MacFarlane, J. Sun, NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF3SO3 and PAN, Electrochimica Acta. 45 (2000) 1237–1242.
[32] F. Gray, M. Armand, Polymer Electrolytes, in: J.O. Besenhard (Ed. ), Handb. Battery Mater., Wiley-VCH, Weinheim, New York, (1999).
[33] D. Fish, I.M. Khan, J. Smid, Conductivity of solid complexes of lithium perchlorate with poly{[ω-methoxyhexa(oxyethylene)ethoxy]methylsiloxane}, Makromol. Chem. Rapid Commun. 7 (1986) 115–120.
[34] K. Funke, R.D. Banhatti, Coupling model and MIGRATION concept – Equivalence and mutual mapping, J. Non-Cryst. Solids. 353 (2007) 3845–3852.
[35] T. Furukawa, Y. Mukasa, T. Suzuki, K. Kano, Microphase separation and ion-conduction mechanisms in polypropylene oxide/lithium perchlorate (LiClO4) complexes, J. Polym. Sci. Part B Polym. Phys. 40 (2002) 613–622.
DOI: 10.1002/polb.10123
[36] L. Gitelman, M. Israeli, A. Averbuch, M. Nathan, Z. Schuss, D. Golodnitsky, Polymer geometry and Li+ conduction in poly(ethylene oxide), J. Comput. Phys. 227 (2008) 8437–8447.
[37] D. Golodnitsky, R. Kovarsky, H. Mazor, Y. Rosenberg, I. Lapides, E. Peled, W. Wieczorek, A. Plewa, M. Siekierski, M. Kalita, L. Settimi, B. Scrosati, L.G. Scanlon, Host-guest interactions in single-ion lithium polymer electrolyte, J. Electrochem. Soc. 154 (2007).
DOI: 10.1149/1.2722538
[38] D. Golodnitsky, E. Peled, Stretching-induced conductivity enhancement of LiI-(PEO)-polymer electrolyte, Electrochimica Acta. 45 (2000) 1431–1436.
[39] M. Grünebaum, M.M. Hiller, S. Jankowsky, S. Jeschke, B. Pohl, T. Schürmann, P. Vettikuzha, A. -C. Gentschev, R. Stolina, R. Müller, H. -D. Wiemhöfer, Synthesis and electrochemistry of polymer based electrolytes for lithium batteries, Prog. Solid State Chem. 42 (2014).
[40] H. Hafezi, J. Newman, Verification and analysis of transference number measurements by the galvanostatic polarization method, J. Electrochem. Soc. 147 (2000) 3036–3042.
DOI: 10.1149/1.1393644
[41] D.T. Hallinan, N.P. Balsara, Polymer Electrolytes, Annu. Rev. Mater. Res. 43 (2013) 503–525.
[42] H. -B. Han, S. -S. Zhou, D. -J. Zhang, S. -W. Feng, L. -F. Li, K. Liu, W. -F. Feng, J. Nie, H. Li, X. -J. Huang, Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties, J. Power Sources. 196 (2011).
[43] M. Herstedt, M. Smirnov, P. Johansson, M. Chami, J. Grondin, L. Servant, J.C. Lassègues, Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide anion (TFSI−), J. Raman Spectrosc. 36 (2005) 762–770.
DOI: 10.1002/jrs.1347
[44] R. Hooper, L.J. Lyons, M.K. Mapes, D. Schumacher, D.A. Moline, R. West, Highly Conductive Siloxane Polymers, Macromolecules. 34 (2001) 931–936.
DOI: 10.1021/ma0018446
[45] K. Izutsu, Electrochemistry in Nonaqueous Solutions, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, (2002).
[46] S. Jankowsky, M.M. Hiller, O. Fromm, M. Winter, H. -D. Wiemhöfer, Enhanced Lithium-Ion Transport in Polyphosphazene based Gel Polymer Electrolytes, Electrochimica Acta. 155 (2015) 364–371.
[47] S. Jankowsky, M.M. Hiller, H. -D. Wiemhöfer, Preparation and electrochemical performance of polyphosphazene based salt-in-polymer electrolyte membranes for lithium ion batteries, J. Power Sources. 253 (2014) 256–262.
[48] P. Jayathilaka, Dielectric relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system PAN/EC/PC/LiTFSI, Solid State Ion. 156 (2003) 179–195.
[49] S. Jeschke, A. -C. Gentschev, H. -D. Wiemhöfer, Disiloxanes with cyclic or non-cyclic carbamate moieties as electrolytes for lithium-ion batteries, Chem. Commun. 49 (2013) 1190.
DOI: 10.1039/c2cc38326h
[50] S. Jeschke, H. -D. Wiemhöfer, C. Mück-Lichtenfeld, Computational study of structural properties of lithium cation complexes with carbamate-modified disiloxanes, Phys Chem Chem Phys. 16 (2014) 14236–14243.
DOI: 10.1039/c4cp01837k
[51] P. Johansson, M. Edvardsson, J. Adebahr, P. Jacobsson, Mixed Solvent and Polymer Coordination in PAN and PMMA Gel Polymer Electrolytes Studied by Ab Initio Calculations and Raman Spectroscopy, J. Phys. Chem. B. 107 (2003) 12622–12627.
DOI: 10.1021/jp035138t
[52] P. Johansson, S.P. Gejji, J. Tegenfeldt, J. Lindgren, The imide ion: potential energy surface and geometries, Electrochimica Acta. 43 (1998) 1375–1379.
[53] T.R. Jow, K. Xu, M.S. Ding, S.S. Zhang, J.L. Allen, K. Amine, LiBOB-Based Electrolytes for Li-Ion Batteries for Transportation Applications, J. Electrochem. Soc. 151 (2004) A1702.
DOI: 10.1149/1.1789393
[54] F. Kaneko, S. Wada, M. Nakayama, M. Wakihara, S. Kuroki, Dynamic Transport in Li-Conductive Polymer Electrolytes Plasticized with Poly(ethylene glycol)-Borate/Aluminate Ester, Chemphyschem. 10 (2009) 1911–(1915).
[55] S. -J. Kang, S. Yu, C. Lee, D. Yang, H. Lee, Effects of electrolyte-volume-to-electrode-area ratio on redox behaviors of graphite anodes for lithium-ion batteries, Electrochimica Acta. 141 (2014) 367–373.
[56] N. Karan, D. Pradhan, R. Thomas, B. Natesan, R. Katiyar, Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–LiCF3SO3): Ionic conductivity and dielectric relaxation, Solid State Ion. 179 (2008).
[57] N. Kaskhedikar, J. Paulsdorf, A. Burjanadze, Y. Karatas, B. Roling, H.D. Wiemhöfer, Polyphosphazene based composite polymer electrolytes, Solid State Ion. 177 (2006) 2699–2704.
[58] M. Kaynak, A. Yusuf, H. Aydın, M.U. Taşkıran, A. Bozkurt, Enhanced ionic conductivity in borate ester plasticized Polyacrylonitrile electrolytes for lithium battery application, Electrochimica Acta. 164 (2015) 108–113.
[59] K. Kesavan, C.M. Mathew, S. Rajendran, M. Ulaganathan, Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 184 (2014).
[60] B. K. Money, K. Hariharan, J. Swenson, Relation between structural and conductivity relaxation in PEO and PEO based electrolytes, Solid State Ion. 262 (2014) 785–789.
[61] L.J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba, R. Loch, R. Atanasoski, Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells, J. Power Sources. 68 (1997).
[62] M. Kunze, Y. Karatas, H. -D. Wiemhöfer, H. Eckert, M. Schönhoff, Activation of transport and local dynamics in polysiloxane-based salt-in-polymer electrolytes: a multinuclear NMR study, Phys. Chem. Chem. Phys. 12 (2010) 6844–6851.
DOI: 10.1039/b925840j
[63] M. Kunze, A. Schulz, H. -D. Wiemhöfer, H. Eckert, M. Schönhoff, Transport mechanisms of ions in graft-copolymer based salt-in-polymer electrolytes, Z Phys. Chem This Vol. (2010).
[64] L. Li, S. Zhou, H. Han, H. Li, J. Nie, M. Armand, Z. Zhou, X. Huang, Transport and Electrochemical Properties and Spectral Features of Non-Aqueous Electrolytes Containing LiFSI in Linear Carbonate Solvents, J. Electrochem. Soc. 158 (2011) A74.
DOI: 10.1149/1.3514705
[65] Z. Liu, J. Chai, G. Xu, Q. Wang, G. Cui, Functional lithium borate salts and their potential application in high performance lithium batteries, Coord. Chem. Rev. 292 (2015) 56–73.
[66] T.A. Luther, F.F. Stewart, J.L. Budzien, R.A. LaViolette, W.F. Bauer, M.K. Harrup, C.W. Allen, A. Elayan, On the Mechanism of Ion Transport through Polyphosphazene Solid Polymer Electrolytes: NMR, IR, and Raman Spectroscopic Studies and Computational Analysis of 15N-Labeled Polyphosphazenes, J. Phys. Chem. B. 107 (2003).
DOI: 10.1021/jp027641w
[67] J. Maier, G. Schwitzgebel, Theoretical Treatment of the Diffusion Coupled with Reaktion, Applied to the Example of a Binary Solid Compound MX, Phys. Status Solidi B-Basic Res. 113 (1982) 535–547.
[68] M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz, L. Niedzicki, M. Kalita, A. Plewa-Marczewska, A. Bitner, P. Wieczorek, T. Trzeciak, M. Kasprzyk, P. Łężak, Z. Zukowska, A. Zalewska, W. Wieczorek, Electrolytes for Li-ion transport – Review, Solid State Ion. 276 (2015).
[69] M. Marzantowicz, J.R. Dygas, F. Krok, J.L. Nowiński, A. Tomaszewska, Z. Florjańczyk, E. Zygadło-Monikowska, Crystalline phases, morphology and conductivity of PEO: LiTFSI electrolytes in the eutectic region, J. Power Sources. 159 (2006) 420–430.
[70] Y. Matsuda, Conductivity of the LiBF[sub 4]∕Mixed Ether Electrolytes for Secondary Lithium Cells, J. Electrochem. Soc. 131 (1984) 2821.
DOI: 10.1149/1.2115416
[71] H. Mazor, D. Golodnitsky, Y. Rosenberg, E. Peled, W. Wieczorek, B. Scrosati, Solid Composite Polymer Electrolytes with High Cation Transference Number, Isr. J. Chem. 48 (2008) 259–268.
[72] W.H. Meyer, Polymer electrolytes for lithium-ion batteries, Adv. Mater. Deerfield Beach Fla. 10 (1998) 439–448.
DOI: 10.1002/(sici)1521-4095(199804)10:6<439::aid-adma439>3.0.co;2-i
[73] C. Michot, M. Armand, M. Gauthier, Y. Choquette, Pentacyclic anion salts or tetrazapentalene derivatives and their uses as ionic conducting materials, US6835495 B2, (2004).
[74] J. Muldoon, C.B. Bucur, N. Boaretto, T. Gregory, V. di Noto, Polymers: Opening Doors to Future Batteries, Polym. Rev. 55 (2015) 208–246.
[75] F. Müller‐Plathe, W.F. van Gunsteren, Computer simulation of a polymer electrolyte: Lithium iodide in amorphous poly(ethylene oxide), J. Chem. Phys. 103 (1995) 4745–4756.
DOI: 10.1063/1.470611
[76] K. Murata, S. Izuchi, Y. Yoshihisa, An overview of the research and development of solid polymer electrolyte batteries, Electrochimica Acta. 45 (2000) 1501–1508.
[77] B. Oh, D. Vissers, Z. Zhang, R. West, H. Tsukamoto, K. Amine, New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery, J. Power Sources. 119-121 (2003) 442–447.
[78] J. -C. Panitz, U. Wietelmann, M. Wachtler, S. Ströbele, M. Wohlfahrt-Mehrens, Film formation in LiBOB-containing electrolytes, J. Power Sources. 153 (2006) 396–401.
[79] T.M. Pappenfus, W.A. Henderson, B.B. Owens, K.R. Mann, W.H. Smyrl, Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials, J. Electrochem. Soc. 151 (2004) A209.
DOI: 10.1149/1.1635384
[80] M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, A review of conduction phenomena in Li-ion batteries, J. Power Sources. 195 (2010) 7904–7929.
[81] L. Péter, J. Arai, Anodic dissolution of aluminium in organic electrolytes containing perfluoroalkylsulfonyl imides, J. Appl. Electrochem. 29 (1999) 1053–1061.
[82] A.V. Plakhotnyk, L. Ernst, R. Schmutzler, Hydrolysis in the system LiPF6—propylene carbonate—dimethyl carbonate—H2O, J. Fluor. Chem. 126 (2005) 27–31.
[83] D.J. Plazek, K.L. Ngai, Correlation of polymer segmental chain dynamics with temperature-dependent time-scale shifts, Macromolecules. 24 (1991) 1222–1224.
DOI: 10.1021/ma00005a044
[84] A. Plewa-Marczewska, M. Kalita, M. Marczewski, M. Siekierski, NMR studies of equilibriums in electrolytes, Electrochimica Acta. 55 (2010) 1389–1395.
[85] B. Pohl, M.M. Hiller, S.M. Seidel, M. Grünebaum, H. -D. Wiemhöfer, Nitrile functionalized disiloxanes with dissolved LiTFSI as lithium ion electrolytes with high thermal and electrochemical stability, J. Power Sources. 274 (2015) 629–635.
[86] F.P. Price, R.W. Kilb, The morphology and internal structure of poly(ethylene oxide) spherulites, J. Polym. Sci. 57 (1962) 395–403.
[87] Q. Qin, G.B. McKenna, Correlation between dynamic fragility and glass transition temperature for different classes of glass forming liquids, J. Non-Cryst. Solids. 352 (2006) 2977–2985.
[88] J. Rault, Remarks on the Kohlrausch exponent and the Vogel–Fulcher–Tamann law in glass-forming materials, J. Non-Cryst. Solids. 260 (1999) 164–166.
[89] N.A.A. Rossi, Z.C. Zhang, Y. Schneider, K. Morcom, L.J. Lyons, Q.Z. Wang, K. Amine, R. West, Synthesis and characterization of tetra- and trisiloxane-containing oligo(ethylene glycol)s - Highly conducting electrolytes for lithium batteries, Chem. Mater. 18 (2006).
DOI: 10.1021/cm051367b
[90] Y. Sasaki, M. Handa, K. Kurashima, T. Tonuma, K. Usami, Application of Lithium Organoborate with Salicylic Ligand to Lithium Battery Electrolyte, J. Electrochem. Soc. 148 (2001) A999.
DOI: 10.1149/1.1390343
[91] S. Shui Zhang, An unique lithium salt for the improved electrolyte of Li-ion battery, Electrochem. Commun. 8 (2006) 1423–1428.
[92] S. Skaarup, K. West, B. Zachau-Christiansen, M. Popall, J. Kappel, J. Kron, G. Eichinger, G. Semrau, Towards solid state lithium batteries based on ORMOCER electrolytes, Electrochimica Acta. 43 (1998) 1589–1592.
[93] A.P. Sokolov, K.S. Schweizer, Resolving the Mystery of the Chain Friction Mechanism in Polymer Liquids, Phys. Rev. Lett. 102 (2009) 248301.
[94] E. Staunton, Y.G. Andreev, P.G. Bruce, Factors influencing the conductivity of crystalline polymer electrolytes, Faraday Discuss. 134 (2007) 143–156.
DOI: 10.1039/b601945e
[95] T. Takekawa, K. Kamiguchi, H. Imai, M. Hatano, Physicochemical and Electrochemical Properties of the Organic Solvent Electrolyte with Lithium Bis(fluorosulfonyl)Imide (LiFSI) As Lithium-Ion Conducting Salt for Lithium-Ion Batteries, ECS Trans. 64 (2015).
[96] T. Takeuchi, S. Noguchi, H. Morimoto, S. Tobishima, Carbonate-modified siloxanes as solvents of electrolyte solutions for rechargeable lithium cells, J. Power Sources. 195 (2010) 580–587.
[97] G. Tammann, W. Hesse, Die Abhängigkeit der Viscosität von der Temperatur bei unterkühlten Flüssigkeiten, Z. Für Anorg. Allg. Chem. 156 (1926) 245–257.
[98] Y. Tominaga, K. Yamazaki, Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles, Chem. Commun. 50 (2014) 4448.
DOI: 10.1039/c3cc49588d
[99] S. Tsuzuki, W. Shinoda, M. Matsugami, Y. Umebayashi, K. Ueno, T. Mandai, S. Seki, K. Dokko, M. Watanabe, Structures of [Li(glyme)] + complexes and their interactions with anions in equimolar mixtures of glymes and Li[TFSA]: analysis by molecular dynamics simulations, Phys Chem Chem Phys. 17 (2015).
DOI: 10.1039/c4cp04718d
[100] K. Ueno, R. Tatara, S. Tsuzuki, S. Saito, H. Doi, K. Yoshida, T. Mandai, M. Matsugami, Y. Umebayashi, K. Dokko, M. Watanabe, Li + solvation in glyme–Li salt solvate ionic liquids, Phys Chem Chem Phys. 17 (2015) 8248–8257.
DOI: 10.1039/c4cp05943c
[101] C. Vachon, C. Labreche, A. Vallee, S. Besner, M. Dumont, J. Prud'homme, Microphase Separation and Conductivity Behavior of Poly(propylene oxide)-Lithium Salt Electrolytes, Macromolecules. 28 (1995) 5585–5594.
DOI: 10.1021/ma00120a025
[102] N. Voigt, P. Isken, A. Lex-Balducci, L. van Wüllen, Local Li Coordination and Ionic Transport in Methacrylate-Based Gel Polymer Electrolytes, ChemPhysChem. 14 (2013) 3113–3120.
[103] N. Voigt, L. van Wüllen, The mechanism of ionic transport in PAN-based solid polymer electrolytes, Solid State Ion. 208 (2012) 8–16.
[104] C.W. Walker, Conductivity and Electrochemical Stability of Electrolytes Containing Organic Solvent Mixtures with Lithium tris(Trifluoromethanesulfonyl)methide, J. Electrochem. Soc. 143 (1996) L80.
DOI: 10.1149/1.1836607
[105] M. Walkowiak, G. Schroeder, B. Gierczyk, D. Waszak, M. Osińska, New lithium ion conducting polymer electrolytes based on polysiloxane grafted with Si-tripodand centers, Electrochem. Commun. 9 (2007) 1558–1562.
[106] M. Walkowiak, D. Waszak, M. Osinska-Broniarz, B. Gierczyk, G. Schroeder, Structure and lithium transport phenomena in a new tripodand-grafted polysiloxane, POLIMERY. 56 (2011) 294–301.
[107] Q. Wang, J. Sun, S. Lu, X. Yao, C. Chen, Study on the kinetics properties of lithium hexafluorophosphate thermal decomposition reaction, Solid State Ion. 177 (2006) 137–140.
[108] Y. Wang, F. Fan, A.L. Agapov, T. Saito, J. Yang, X. Yu, K. Hong, J. Mays, A.P. Sokolov, Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes, Polymer. 55 (2014) 4067–4076.
[109] Y. Wang, F. Fan, A.L. Agapov, X. Yu, K. Hong, J. Mays, A.P. Sokolov, Design of superionic polymers—New insights from Walden plot analysis, Solid State Ion. 262 (2014) 782–784.
[110] Y. Wang, A.P. Sokolov, Design of superionic polymer electrolytes, Curr. Opin. Chem. Eng. 7 (2015) 113–119.
[111] Z. Wang, W. Gao, L. Chen, Y. Mo, X. Huang, Raman and AC Impedance Spectroscopic Studies on Roles of Polyacrylonitrile in Polymer Electrolytes, J. Electrochem. Soc. 149 (2002) E148.
DOI: 10.1149/1.1466862
[112] Z. Wang, W. Gao, X. Huang, Y. Mo, L. Chen, Ion Transport in Polyacrylonitrile-Based Electrolytes with High LiTFSI Contents, Electrochem. Solid-State Lett. 4 (2001) A148–A150.
DOI: 10.1149/1.1390455
[113] H.D. Wiemhöfer, Coupling between electron and ion transport in mixed conductors, Solid State Ion. 40-1 (1990) 530–534.
[114] H. -D. Wiemhöfer, M. Grünebaum, M.M. Hiller, Ion-conductive polymeric compound for electrochemical cells, DE102012102162A1, WO2013135824A3, (2013).
[115] M. Winter, W.K. Appel, B. Evers, T. Hodal, K. -C. Möller, I. Schneider, M. Wachtler, M.R. Wagner, G.H. Wrodnigg, J.O. Besenhard, Studies on the Anode/Electrolyte Interfacein Lithium Ion Batteries, Monatshefte Fuer ChemieChemical Mon. 132 (2001).
[116] M. Winter, R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev. 104 (2004) 4245–4270.
DOI: 10.1021/cr020730k
[117] M.C. Wintersgill, J.J. Fontanella, Y.S. Pak, S.G. Greenbaum, A. Al-Mudaris, A.V. Chadwick, Electrical conductivity, differential scanning calorimetry and nuclear magnetic resonance studies of amorphous poly(ethylene oxide) complexed with sodium salts, Polymer. 30 (1989).
[118] P.V. Wright, Electrical conductivity in ionic complexes of poly(ethylene oxide), Br. Polym. J. 7 (1975) 319–327.
[119] P.V. Wright, Polymer electrolytes—the early days, Electrochimica Acta. 43 (1998) 1137–1143.
[120] Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J Mater Chem A. 3 (2015) 19218–19253.
DOI: 10.1039/c5ta03471j
[121] K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev. 104 (2004) 4303–4418.
DOI: 10.1021/cr030203g
[122] K. Xu, Electrolytes and Interphases in Li-Ion Batteries and Beyond, Chem. Rev. 114 (2014) 11503–11618.
DOI: 10.1021/cr500003w
[123] K. Xu, S. Zhang, T.R. Jow, W. Xu, C.A. Angell, LiBOB as Salt for Lithium-Ion Batteries: A Possible Solution for High Temperature Operation, Electrochem. Solid-State Lett. 5 (2002) A26.
DOI: 10.1149/1.1426042
[124] H. Yang, K. Kwon, T.M. Devine, J.W. Evans, Aluminum Corrosion in Lithium Batteries An Investigation Using the Electrochemical Quartz Crystal Microbalance, J. Electrochem. Soc. 147 (2000) 4399.
DOI: 10.1149/1.1394077
[125] H. Yang, G.V. Zhuang, P.N. Ross, Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6, J. Power Sources. 161 (2006) 573–579.
[126] L. Yang, A. Xiao, B.L. Lucht, Investigation of solvation in lithium ion battery electrolytes by NMR spectroscopy, J. Mol. Liq. 154 (2010) 131–133.
[127] H. -K. Yoon, W. -S. Chung, N. -J. Jo, Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3, Electrochimica Acta. 50 (2004) 289–293.
[128] B. Zhang, Y. Zhou, X. Li, X. Ren, H. Nian, Y. Shen, Q. Yun, FTIR spectroscopic studies of lithium tetrafluoroborate in propylene carbonate+diethyl carbonate mixtures, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 122 (2014) 59–64.
[129] B. Zhang, Y. Zhou, X. Li, J. Wang, G. Li, Q. Yun, X. Wang, Li+-molecule interactions of lithium tetrafluoroborate in propylene carbonate + N, N-dimethylformamide mixtures: An FTIR spectroscopic study, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 124 (2014).
[130] L.Z. Zhang, Z.C. Zhang, S. Harring, M. Straughan, R. Butorac, Z.H. Chen, L. Lyons, K. Amine, R. West, Highly conductive trimethylsilyl oligo(ethylene oxide) electrolytes for energy storage applications, J. Mater. Chem. 18 (2008) 3713–3717.
DOI: 10.1039/b806290k
[131] S.S. Zhang, K. Xu, T.R. Jow, Study of LiBF[sub 4] as an Electrolyte Salt for a Li-Ion Battery, J. Electrochem. Soc. 149 (2002) A586.
DOI: 10.1149/1.1466857
[132] X. Zhang, T.M. Devine, Identity of Passive Film Formed on Aluminum in Li-Ion Battery Electrolytes with LiPF[sub 6], J. Electrochem. Soc. 153 (2006) B344.
DOI: 10.1149/1.2214465
[133] Z.C. Zhang, L.J. Lyons, K. Amine, R. West, Network-type ionic conductors based on oligoethyleneoxy-functionalized pentamethylcyclopentasiloxanes, Macromolecules. 38 (2005) 5714–5720.
DOI: 10.1021/ma050066k
[134] Z. Zhang, J. Dong, R. West, K. Amine, Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries, J. Power Sources. 195 (2010) 6062–6068.
[135] H. -M. Zhou, F. -R. Liu, J. Li, Y. -F. Li, Y. -H. Zhu, Z. -Q. Fang, Hydrolysis and influences on physical and chemical properties for lithium battery electrolyte LiODFB, Zhongnan Daxue Xuebao Ziran Kexue BanJournal Cent. South Univ. Sci. Technol. 43 (2012).