Transport of Ions in Salt-in-Polymer Membranes

Article Preview

Abstract:

Replacing traditional liquid electrolytes by polymers will significantly improve electrical energy storage technologies. However, the ion transport mechanism in polymers has been one of the main barriers to further improvement in Li-ion batteries and is still not completely clarified. In an effort to gain a better understanding of the conduction phenomena in electrolytes, a comprehensive survey of all transport mechanism including solvation, segmental motion and hopping, is presented here. Included are a survey of the fundamentals of diffusion and conductivity in polymer electrolytes; recent developments in Li salts; and a detailed discussion about ion transport mechanism with representative references.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-155

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, Å. Wendsjö, Crystallinity and morphology of PVdF–HFP-based gel electrolytes, Polymer. 42 (2001) 1407–1416.

DOI: 10.1016/s0032-3861(00)00517-6

Google Scholar

[2] A. Abouimrane, J. Ding, I.J. Davidson, Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations, J. Power Sources. 189 (2009) 693–696.

DOI: 10.1016/j.jpowsour.2008.08.077

Google Scholar

[3] A.L. Agapov, A.P. Sokolov, Decoupling Ionic Conductivity from Structural Relaxation: A Way to Solid Polymer Electrolytes?, Macromolecules. 44 (2011) 4410–4414.

DOI: 10.1021/ma2001096

Google Scholar

[4] H.R. Allcock, M.E. Napierala, D.L. Olmeijer, S.A. Best, K.M. Merz, Ionic Conduction in Polyphosphazene Solids and Gels:  13C, 31P, and 15N NMR Spectroscopy and Molecular Dynamics Simulations, Macromolecules. 32 (1999) 732–741.

DOI: 10.1021/ma980665+

Google Scholar

[5] J.L. Allen, Q. Ly, D. Seo, P. Boyle, W. Henderson, Solvent-LiBF4 Phase Diagrams, Ionic Association and Solubility - Cyclic Carbonates and Carboxylic Esters, Meet. Abstr. MA2011-02 (2011) 1393–1393.

DOI: 10.1149/ma2011-02/17/1393

Google Scholar

[6] M. Amereller, T. Schedlbauer, D. Moosbauer, C. Schreiner, C. Stock, F. Wudy, S. Zugmann, H. Hammer, A. Maurer, R.M. Gschwind, H. -D. Wiemhöfer, M. Winter, H.J. Gores, Electrolytes for lithium and lithium ion batteries: From synthesis of novel lithium borates and ionic liquids to development of novel measurement methods, Prog. Solid State Chem. 42 (2014).

DOI: 10.1016/j.progsolidstchem.2014.04.001

Google Scholar

[7] C. Angell, Fast ion motion in glassy and amorphous materials, Solid State Ion. 9-10(1983)3–16.

DOI: 10.1016/0167-2738(83)90206-0

Google Scholar

[8] G.B. Appetecchi, D. Zane, B. Scrosati, PEO-Based Electrolyte Membranes Based on LiBC[sub 4]O[sub 8] Salt, J. Electrochem. Soc. 151 (2004) A1369.

DOI: 10.1149/1.1774488

Google Scholar

[9] V. Aravindan, J. Gnanaraj, S. Madhavi, H. -K. Liu, Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries, Chem. – Eur. J. 17 (2011) 14326–14346.

DOI: 10.1002/chem.201101486

Google Scholar

[10] M. Armand, Polymer solid electrolytes - an overview, Solid State Ion. 9-10 (1983) 745–754.

DOI: 10.1016/0167-2738(83)90083-8

Google Scholar

[11] M. Armand, The history of polymer electrolytes, Solid State Ion. 69 (1994) 309–319.

Google Scholar

[12] D. Aurbach, A. Zaban, A. Schechter, Y. Ein‐Eli, E. Zinigrad, B. Markovsky, The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries I . Li Metal Anodes, J. Electrochem. Soc. 142 (1995) 2873–2882.

DOI: 10.1149/1.2048658

Google Scholar

[13] C.G. Barlowz, Reaction of Water with Hexafluorophosphates and with Li Bis(perfluoroethylsulfonyl)imide Salt, Electrochem. Solid-State Lett. 2 (1999) 362.

DOI: 10.1149/1.1390838

Google Scholar

[14] J. Barthel, A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes, J. Electrochem. Soc. 142 (1995) 2527.

DOI: 10.1149/1.2050048

Google Scholar

[15] C. Berthier, W. Gorecki, M. Minier, M.B. Armand, J.M. Chabagno, P. Rigaud, Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts, Solid State Ion. 11 (1983) 91–95.

DOI: 10.1016/0167-2738(83)90068-1

Google Scholar

[16] A. Blazejczyk, W. Wieczorek, R. Kovarsky, D. Golodnitsky, E. Peled, L.G. Scanlon, G.B. Appetecchi, B. Scrosati, Novel solid polymer electrolytes with single lithium-ion transport, J. Electrochem. Soc. 151 (2004) A1762–A1766.

DOI: 10.1149/1.1793714

Google Scholar

[17] P.M. Blonsky, D.F. Shriver, P. Austin, H.R. Allcock, Polyphosphazene solid electrolytes, J. Am. Chem. Soc. 106 (1984) 6854–6855.

DOI: 10.1021/ja00334a071

Google Scholar

[18] J.O. Bockris, A.K.N. Reddy, Modern electrochemistry, Kluwer Academic Publishers, New York, (2002).

Google Scholar

[19] O. Borodin, M. Olguin, P. Ganesh, P.R.C. Kent, J.L. Allen, W.A. Henderson, Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry, Phys Chem Chem Phys. 18 (2016) 164–175.

DOI: 10.1039/c5cp05121e

Google Scholar

[20] T. Böttcher, B. Duda, N. Kalinovich, O. Kazakova, M. Ponomarenko, K. Vlasov, M. Winter, G. -V. Röschenthaler, Syntheses of novel delocalized cations and fluorinated anions, new fluorinated solvents and additives for lithium ion batteries, Prog. Solid State Chem. 42 (2014).

DOI: 10.1016/j.progsolidstchem.2014.04.013

Google Scholar

[21] V. Chandrasekhar, Polymer Solid Electrolytes: Synthesis and Structure, in: V. Bellon-Maurel, A. Calmon-Decriaud, V. Chandrasekhar, N. Hadjichristidis, J.W. Mays, S. Pispas, M. Pitsikalis, F. Silvestre (Eds. ), Blockcopolymers - Polyelectrolytes - Biodegrad., Springer Berlin Heidelberg, 1998: p.139.

DOI: 10.1007/3-540-69191-x

Google Scholar

[22] S.Z.D. Cheng, J.S. Barley, P.A. Giusti, Spherulite formation in poly(ethylene oxide) mixtures, Polymer. 31 (1990) 845–849.

DOI: 10.1016/0032-3861(90)90045-z

Google Scholar

[23] A.M. Christie, S.J. Lilley, E. Staunton, Y.G. Andreev, P.G. Bruce, Increasing the conductivity of crystalline polymer electrolytes, Nature. 433 (2005) 50–53.

DOI: 10.1038/nature03186

Google Scholar

[24] Cznotka, E., Jeschke, S., Vettikuzha, P., Wiemhöfer, H. -D., Semi-interpenetrating polymer network of poly(methyl methacrylate) and ether-modified polysiloxane, Submitted. (n. d. ).

DOI: 10.1016/j.ssi.2015.02.013

Google Scholar

[25] F.B. Dias, L. Plomp, J.B.J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries, J. Power Sources. 88 (2000) 169–191.

DOI: 10.1016/s0378-7753(99)00529-7

Google Scholar

[26] V. Di Noto, S. Lavina, G.A. Giffin, E. Negro, B. Scrosati, Polymer electrolytes: Present, past and future, Electrochimica Acta. 57 (2011) 4–13.

DOI: 10.1016/j.electacta.2011.08.048

Google Scholar

[27] G.P. Dukhanin, S.A. Dumler, A.N. Sablin, I.A. Novakov, Solid polymeric electrolyte based on poly(ethylene carbonate)-lithium perchlorate system, Russ. J. Appl. Chem. 82 (2009) 243–246.

DOI: 10.1134/s1070427209020153

Google Scholar

[28] H.A. Every, F. Zhou, M. Forsyth, D.R. MacFarlane, Lithium ion mobility in poly(vinyl alcohol) based polymer electrolytes as determined by 7Li NMR spectroscopy, Electrochimica Acta. 43 (1998) 1465–1469.

DOI: 10.1016/s0013-4686(97)10085-8

Google Scholar

[29] F. Fan, Y. Wang, A.P. Sokolov, Ionic Transport, Microphase Separation, and Polymer Relaxation in Poly(propylene glycol) and Lithium Perchlorate Mixtures, Macromolecules. 46 (2013) 9380–9389.

DOI: 10.1021/ma401238k

Google Scholar

[30] A. Ferry, L. Edman, M. Forsyth, D.R. MacFarlane, J. Sun, Connectivity, ionic interactions, and migration in a fast-ion-conducting polymer-in-salt electrolyte based on poly(acrylonitrile) and LiCF[sub 3]SO[sub 3], J. Appl. Phys. 86 (1999) 2346.

DOI: 10.1063/1.371053

Google Scholar

[31] A. Ferry, L. Edman, M. Forsyth, D.R. MacFarlane, J. Sun, NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF3SO3 and PAN, Electrochimica Acta. 45 (2000) 1237–1242.

DOI: 10.1016/s0013-4686(99)00386-2

Google Scholar

[32] F. Gray, M. Armand, Polymer Electrolytes, in: J.O. Besenhard (Ed. ), Handb. Battery Mater., Wiley-VCH, Weinheim, New York, (1999).

Google Scholar

[33] D. Fish, I.M. Khan, J. Smid, Conductivity of solid complexes of lithium perchlorate with poly{[ω-methoxyhexa(oxyethylene)ethoxy]methylsiloxane}, Makromol. Chem. Rapid Commun. 7 (1986) 115–120.

Google Scholar

[34] K. Funke, R.D. Banhatti, Coupling model and MIGRATION concept – Equivalence and mutual mapping, J. Non-Cryst. Solids. 353 (2007) 3845–3852.

DOI: 10.1016/j.jnoncrysol.2007.03.024

Google Scholar

[35] T. Furukawa, Y. Mukasa, T. Suzuki, K. Kano, Microphase separation and ion-conduction mechanisms in polypropylene oxide/lithium perchlorate (LiClO4) complexes, J. Polym. Sci. Part B Polym. Phys. 40 (2002) 613–622.

DOI: 10.1002/polb.10123

Google Scholar

[36] L. Gitelman, M. Israeli, A. Averbuch, M. Nathan, Z. Schuss, D. Golodnitsky, Polymer geometry and Li+ conduction in poly(ethylene oxide), J. Comput. Phys. 227 (2008) 8437–8447.

DOI: 10.1016/j.jcp.2008.06.006

Google Scholar

[37] D. Golodnitsky, R. Kovarsky, H. Mazor, Y. Rosenberg, I. Lapides, E. Peled, W. Wieczorek, A. Plewa, M. Siekierski, M. Kalita, L. Settimi, B. Scrosati, L.G. Scanlon, Host-guest interactions in single-ion lithium polymer electrolyte, J. Electrochem. Soc. 154 (2007).

DOI: 10.1149/1.2722538

Google Scholar

[38] D. Golodnitsky, E. Peled, Stretching-induced conductivity enhancement of LiI-(PEO)-polymer electrolyte, Electrochimica Acta. 45 (2000) 1431–1436.

DOI: 10.1016/s0013-4686(99)00355-2

Google Scholar

[39] M. Grünebaum, M.M. Hiller, S. Jankowsky, S. Jeschke, B. Pohl, T. Schürmann, P. Vettikuzha, A. -C. Gentschev, R. Stolina, R. Müller, H. -D. Wiemhöfer, Synthesis and electrochemistry of polymer based electrolytes for lithium batteries, Prog. Solid State Chem. 42 (2014).

DOI: 10.1016/j.progsolidstchem.2014.04.004

Google Scholar

[40] H. Hafezi, J. Newman, Verification and analysis of transference number measurements by the galvanostatic polarization method, J. Electrochem. Soc. 147 (2000) 3036–3042.

DOI: 10.1149/1.1393644

Google Scholar

[41] D.T. Hallinan, N.P. Balsara, Polymer Electrolytes, Annu. Rev. Mater. Res. 43 (2013) 503–525.

DOI: 10.1146/annurev-matsci-071312-121705

Google Scholar

[42] H. -B. Han, S. -S. Zhou, D. -J. Zhang, S. -W. Feng, L. -F. Li, K. Liu, W. -F. Feng, J. Nie, H. Li, X. -J. Huang, Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties, J. Power Sources. 196 (2011).

DOI: 10.1016/j.jpowsour.2010.12.040

Google Scholar

[43] M. Herstedt, M. Smirnov, P. Johansson, M. Chami, J. Grondin, L. Servant, J.C. Lassègues, Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide anion (TFSI−), J. Raman Spectrosc. 36 (2005) 762–770.

DOI: 10.1002/jrs.1347

Google Scholar

[44] R. Hooper, L.J. Lyons, M.K. Mapes, D. Schumacher, D.A. Moline, R. West, Highly Conductive Siloxane Polymers, Macromolecules. 34 (2001) 931–936.

DOI: 10.1021/ma0018446

Google Scholar

[45] K. Izutsu, Electrochemistry in Nonaqueous Solutions, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, (2002).

Google Scholar

[46] S. Jankowsky, M.M. Hiller, O. Fromm, M. Winter, H. -D. Wiemhöfer, Enhanced Lithium-Ion Transport in Polyphosphazene based Gel Polymer Electrolytes, Electrochimica Acta. 155 (2015) 364–371.

DOI: 10.1016/j.electacta.2014.12.123

Google Scholar

[47] S. Jankowsky, M.M. Hiller, H. -D. Wiemhöfer, Preparation and electrochemical performance of polyphosphazene based salt-in-polymer electrolyte membranes for lithium ion batteries, J. Power Sources. 253 (2014) 256–262.

DOI: 10.1016/j.jpowsour.2013.11.120

Google Scholar

[48] P. Jayathilaka, Dielectric relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system PAN/EC/PC/LiTFSI, Solid State Ion. 156 (2003) 179–195.

DOI: 10.1016/s0167-2738(02)00616-1

Google Scholar

[49] S. Jeschke, A. -C. Gentschev, H. -D. Wiemhöfer, Disiloxanes with cyclic or non-cyclic carbamate moieties as electrolytes for lithium-ion batteries, Chem. Commun. 49 (2013) 1190.

DOI: 10.1039/c2cc38326h

Google Scholar

[50] S. Jeschke, H. -D. Wiemhöfer, C. Mück-Lichtenfeld, Computational study of structural properties of lithium cation complexes with carbamate-modified disiloxanes, Phys Chem Chem Phys. 16 (2014) 14236–14243.

DOI: 10.1039/c4cp01837k

Google Scholar

[51] P. Johansson, M. Edvardsson, J. Adebahr, P. Jacobsson, Mixed Solvent and Polymer Coordination in PAN and PMMA Gel Polymer Electrolytes Studied by Ab Initio Calculations and Raman Spectroscopy, J. Phys. Chem. B. 107 (2003) 12622–12627.

DOI: 10.1021/jp035138t

Google Scholar

[52] P. Johansson, S.P. Gejji, J. Tegenfeldt, J. Lindgren, The imide ion: potential energy surface and geometries, Electrochimica Acta. 43 (1998) 1375–1379.

DOI: 10.1016/s0013-4686(97)10047-0

Google Scholar

[53] T.R. Jow, K. Xu, M.S. Ding, S.S. Zhang, J.L. Allen, K. Amine, LiBOB-Based Electrolytes for Li-Ion Batteries for Transportation Applications, J. Electrochem. Soc. 151 (2004) A1702.

DOI: 10.1149/1.1789393

Google Scholar

[54] F. Kaneko, S. Wada, M. Nakayama, M. Wakihara, S. Kuroki, Dynamic Transport in Li-Conductive Polymer Electrolytes Plasticized with Poly(ethylene glycol)-Borate/Aluminate Ester, Chemphyschem. 10 (2009) 1911–(1915).

DOI: 10.1002/cphc.200900191

Google Scholar

[55] S. -J. Kang, S. Yu, C. Lee, D. Yang, H. Lee, Effects of electrolyte-volume-to-electrode-area ratio on redox behaviors of graphite anodes for lithium-ion batteries, Electrochimica Acta. 141 (2014) 367–373.

DOI: 10.1016/j.electacta.2014.07.090

Google Scholar

[56] N. Karan, D. Pradhan, R. Thomas, B. Natesan, R. Katiyar, Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–LiCF3SO3): Ionic conductivity and dielectric relaxation, Solid State Ion. 179 (2008).

DOI: 10.1016/j.ssi.2008.04.034

Google Scholar

[57] N. Kaskhedikar, J. Paulsdorf, A. Burjanadze, Y. Karatas, B. Roling, H.D. Wiemhöfer, Polyphosphazene based composite polymer electrolytes, Solid State Ion. 177 (2006) 2699–2704.

DOI: 10.1016/j.ssi.2006.05.003

Google Scholar

[58] M. Kaynak, A. Yusuf, H. Aydın, M.U. Taşkıran, A. Bozkurt, Enhanced ionic conductivity in borate ester plasticized Polyacrylonitrile electrolytes for lithium battery application, Electrochimica Acta. 164 (2015) 108–113.

DOI: 10.1016/j.electacta.2015.02.214

Google Scholar

[59] K. Kesavan, C.M. Mathew, S. Rajendran, M. Ulaganathan, Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 184 (2014).

DOI: 10.1016/j.mseb.2014.01.009

Google Scholar

[60] B. K. Money, K. Hariharan, J. Swenson, Relation between structural and conductivity relaxation in PEO and PEO based electrolytes, Solid State Ion. 262 (2014) 785–789.

DOI: 10.1016/j.ssi.2013.09.033

Google Scholar

[61] L.J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba, R. Loch, R. Atanasoski, Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells, J. Power Sources. 68 (1997).

DOI: 10.1016/s0378-7753(97)02517-2

Google Scholar

[62] M. Kunze, Y. Karatas, H. -D. Wiemhöfer, H. Eckert, M. Schönhoff, Activation of transport and local dynamics in polysiloxane-based salt-in-polymer electrolytes: a multinuclear NMR study, Phys. Chem. Chem. Phys. 12 (2010) 6844–6851.

DOI: 10.1039/b925840j

Google Scholar

[63] M. Kunze, A. Schulz, H. -D. Wiemhöfer, H. Eckert, M. Schönhoff, Transport mechanisms of ions in graft-copolymer based salt-in-polymer electrolytes, Z Phys. Chem This Vol. (2010).

DOI: 10.1524/zpch.2010.0036

Google Scholar

[64] L. Li, S. Zhou, H. Han, H. Li, J. Nie, M. Armand, Z. Zhou, X. Huang, Transport and Electrochemical Properties and Spectral Features of Non-Aqueous Electrolytes Containing LiFSI in Linear Carbonate Solvents, J. Electrochem. Soc. 158 (2011) A74.

DOI: 10.1149/1.3514705

Google Scholar

[65] Z. Liu, J. Chai, G. Xu, Q. Wang, G. Cui, Functional lithium borate salts and their potential application in high performance lithium batteries, Coord. Chem. Rev. 292 (2015) 56–73.

DOI: 10.1016/j.ccr.2015.02.011

Google Scholar

[66] T.A. Luther, F.F. Stewart, J.L. Budzien, R.A. LaViolette, W.F. Bauer, M.K. Harrup, C.W. Allen, A. Elayan, On the Mechanism of Ion Transport through Polyphosphazene Solid Polymer Electrolytes:  NMR, IR, and Raman Spectroscopic Studies and Computational Analysis of 15N-Labeled Polyphosphazenes, J. Phys. Chem. B. 107 (2003).

DOI: 10.1021/jp027641w

Google Scholar

[67] J. Maier, G. Schwitzgebel, Theoretical Treatment of the Diffusion Coupled with Reaktion, Applied to the Example of a Binary Solid Compound MX, Phys. Status Solidi B-Basic Res. 113 (1982) 535–547.

DOI: 10.1002/pssb.2221130218

Google Scholar

[68] M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz, L. Niedzicki, M. Kalita, A. Plewa-Marczewska, A. Bitner, P. Wieczorek, T. Trzeciak, M. Kasprzyk, P. Łężak, Z. Zukowska, A. Zalewska, W. Wieczorek, Electrolytes for Li-ion transport – Review, Solid State Ion. 276 (2015).

DOI: 10.1016/j.ssi.2015.02.006

Google Scholar

[69] M. Marzantowicz, J.R. Dygas, F. Krok, J.L. Nowiński, A. Tomaszewska, Z. Florjańczyk, E. Zygadło-Monikowska, Crystalline phases, morphology and conductivity of PEO: LiTFSI electrolytes in the eutectic region, J. Power Sources. 159 (2006) 420–430.

DOI: 10.1016/j.jpowsour.2006.02.044

Google Scholar

[70] Y. Matsuda, Conductivity of the LiBF[sub 4]∕Mixed Ether Electrolytes for Secondary Lithium Cells, J. Electrochem. Soc. 131 (1984) 2821.

DOI: 10.1149/1.2115416

Google Scholar

[71] H. Mazor, D. Golodnitsky, Y. Rosenberg, E. Peled, W. Wieczorek, B. Scrosati, Solid Composite Polymer Electrolytes with High Cation Transference Number, Isr. J. Chem. 48 (2008) 259–268.

DOI: 10.1560/ijc.48.3-4.259

Google Scholar

[72] W.H. Meyer, Polymer electrolytes for lithium-ion batteries, Adv. Mater. Deerfield Beach Fla. 10 (1998) 439–448.

DOI: 10.1002/(sici)1521-4095(199804)10:6<439::aid-adma439>3.0.co;2-i

Google Scholar

[73] C. Michot, M. Armand, M. Gauthier, Y. Choquette, Pentacyclic anion salts or tetrazapentalene derivatives and their uses as ionic conducting materials, US6835495 B2, (2004).

Google Scholar

[74] J. Muldoon, C.B. Bucur, N. Boaretto, T. Gregory, V. di Noto, Polymers: Opening Doors to Future Batteries, Polym. Rev. 55 (2015) 208–246.

DOI: 10.1080/15583724.2015.1011966

Google Scholar

[75] F. Müller‐Plathe, W.F. van Gunsteren, Computer simulation of a polymer electrolyte: Lithium iodide in amorphous poly(ethylene oxide), J. Chem. Phys. 103 (1995) 4745–4756.

DOI: 10.1063/1.470611

Google Scholar

[76] K. Murata, S. Izuchi, Y. Yoshihisa, An overview of the research and development of solid polymer electrolyte batteries, Electrochimica Acta. 45 (2000) 1501–1508.

DOI: 10.1016/s0013-4686(99)00365-5

Google Scholar

[77] B. Oh, D. Vissers, Z. Zhang, R. West, H. Tsukamoto, K. Amine, New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery, J. Power Sources. 119-121 (2003) 442–447.

DOI: 10.1016/s0378-7753(03)00187-3

Google Scholar

[78] J. -C. Panitz, U. Wietelmann, M. Wachtler, S. Ströbele, M. Wohlfahrt-Mehrens, Film formation in LiBOB-containing electrolytes, J. Power Sources. 153 (2006) 396–401.

DOI: 10.1016/j.jpowsour.2005.05.025

Google Scholar

[79] T.M. Pappenfus, W.A. Henderson, B.B. Owens, K.R. Mann, W.H. Smyrl, Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials, J. Electrochem. Soc. 151 (2004) A209.

DOI: 10.1149/1.1635384

Google Scholar

[80] M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, A review of conduction phenomena in Li-ion batteries, J. Power Sources. 195 (2010) 7904–7929.

DOI: 10.1016/j.jpowsour.2010.06.060

Google Scholar

[81] L. Péter, J. Arai, Anodic dissolution of aluminium in organic electrolytes containing perfluoroalkylsulfonyl imides, J. Appl. Electrochem. 29 (1999) 1053–1061.

Google Scholar

[82] A.V. Plakhotnyk, L. Ernst, R. Schmutzler, Hydrolysis in the system LiPF6—propylene carbonate—dimethyl carbonate—H2O, J. Fluor. Chem. 126 (2005) 27–31.

DOI: 10.1016/j.jfluchem.2004.09.027

Google Scholar

[83] D.J. Plazek, K.L. Ngai, Correlation of polymer segmental chain dynamics with temperature-dependent time-scale shifts, Macromolecules. 24 (1991) 1222–1224.

DOI: 10.1021/ma00005a044

Google Scholar

[84] A. Plewa-Marczewska, M. Kalita, M. Marczewski, M. Siekierski, NMR studies of equilibriums in electrolytes, Electrochimica Acta. 55 (2010) 1389–1395.

DOI: 10.1016/j.electacta.2009.06.069

Google Scholar

[85] B. Pohl, M.M. Hiller, S.M. Seidel, M. Grünebaum, H. -D. Wiemhöfer, Nitrile functionalized disiloxanes with dissolved LiTFSI as lithium ion electrolytes with high thermal and electrochemical stability, J. Power Sources. 274 (2015) 629–635.

DOI: 10.1016/j.jpowsour.2014.10.080

Google Scholar

[86] F.P. Price, R.W. Kilb, The morphology and internal structure of poly(ethylene oxide) spherulites, J. Polym. Sci. 57 (1962) 395–403.

DOI: 10.1002/pol.1962.1205716530

Google Scholar

[87] Q. Qin, G.B. McKenna, Correlation between dynamic fragility and glass transition temperature for different classes of glass forming liquids, J. Non-Cryst. Solids. 352 (2006) 2977–2985.

DOI: 10.1016/j.jnoncrysol.2006.04.014

Google Scholar

[88] J. Rault, Remarks on the Kohlrausch exponent and the Vogel–Fulcher–Tamann law in glass-forming materials, J. Non-Cryst. Solids. 260 (1999) 164–166.

DOI: 10.1016/s0022-3093(99)00544-x

Google Scholar

[89] N.A.A. Rossi, Z.C. Zhang, Y. Schneider, K. Morcom, L.J. Lyons, Q.Z. Wang, K. Amine, R. West, Synthesis and characterization of tetra- and trisiloxane-containing oligo(ethylene glycol)s - Highly conducting electrolytes for lithium batteries, Chem. Mater. 18 (2006).

DOI: 10.1021/cm051367b

Google Scholar

[90] Y. Sasaki, M. Handa, K. Kurashima, T. Tonuma, K. Usami, Application of Lithium Organoborate with Salicylic Ligand to Lithium Battery Electrolyte, J. Electrochem. Soc. 148 (2001) A999.

DOI: 10.1149/1.1390343

Google Scholar

[91] S. Shui Zhang, An unique lithium salt for the improved electrolyte of Li-ion battery, Electrochem. Commun. 8 (2006) 1423–1428.

DOI: 10.1016/j.elecom.2006.06.016

Google Scholar

[92] S. Skaarup, K. West, B. Zachau-Christiansen, M. Popall, J. Kappel, J. Kron, G. Eichinger, G. Semrau, Towards solid state lithium batteries based on ORMOCER electrolytes, Electrochimica Acta. 43 (1998) 1589–1592.

DOI: 10.1016/s0013-4686(97)10058-5

Google Scholar

[93] A.P. Sokolov, K.S. Schweizer, Resolving the Mystery of the Chain Friction Mechanism in Polymer Liquids, Phys. Rev. Lett. 102 (2009) 248301.

DOI: 10.1103/physrevlett.102.248301

Google Scholar

[94] E. Staunton, Y.G. Andreev, P.G. Bruce, Factors influencing the conductivity of crystalline polymer electrolytes, Faraday Discuss. 134 (2007) 143–156.

DOI: 10.1039/b601945e

Google Scholar

[95] T. Takekawa, K. Kamiguchi, H. Imai, M. Hatano, Physicochemical and Electrochemical Properties of the Organic Solvent Electrolyte with Lithium Bis(fluorosulfonyl)Imide (LiFSI) As Lithium-Ion Conducting Salt for Lithium-Ion Batteries, ECS Trans. 64 (2015).

DOI: 10.1149/06424.0011ecst

Google Scholar

[96] T. Takeuchi, S. Noguchi, H. Morimoto, S. Tobishima, Carbonate-modified siloxanes as solvents of electrolyte solutions for rechargeable lithium cells, J. Power Sources. 195 (2010) 580–587.

DOI: 10.1016/j.jpowsour.2009.07.042

Google Scholar

[97] G. Tammann, W. Hesse, Die Abhängigkeit der Viscosität von der Temperatur bei unterkühlten Flüssigkeiten, Z. Für Anorg. Allg. Chem. 156 (1926) 245–257.

DOI: 10.1002/zaac.19261560121

Google Scholar

[98] Y. Tominaga, K. Yamazaki, Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles, Chem. Commun. 50 (2014) 4448.

DOI: 10.1039/c3cc49588d

Google Scholar

[99] S. Tsuzuki, W. Shinoda, M. Matsugami, Y. Umebayashi, K. Ueno, T. Mandai, S. Seki, K. Dokko, M. Watanabe, Structures of [Li(glyme)] + complexes and their interactions with anions in equimolar mixtures of glymes and Li[TFSA]: analysis by molecular dynamics simulations, Phys Chem Chem Phys. 17 (2015).

DOI: 10.1039/c4cp04718d

Google Scholar

[100] K. Ueno, R. Tatara, S. Tsuzuki, S. Saito, H. Doi, K. Yoshida, T. Mandai, M. Matsugami, Y. Umebayashi, K. Dokko, M. Watanabe, Li + solvation in glyme–Li salt solvate ionic liquids, Phys Chem Chem Phys. 17 (2015) 8248–8257.

DOI: 10.1039/c4cp05943c

Google Scholar

[101] C. Vachon, C. Labreche, A. Vallee, S. Besner, M. Dumont, J. Prud'homme, Microphase Separation and Conductivity Behavior of Poly(propylene oxide)-Lithium Salt Electrolytes, Macromolecules. 28 (1995) 5585–5594.

DOI: 10.1021/ma00120a025

Google Scholar

[102] N. Voigt, P. Isken, A. Lex-Balducci, L. van Wüllen, Local Li Coordination and Ionic Transport in Methacrylate-Based Gel Polymer Electrolytes, ChemPhysChem. 14 (2013) 3113–3120.

DOI: 10.1002/cphc.201300347

Google Scholar

[103] N. Voigt, L. van Wüllen, The mechanism of ionic transport in PAN-based solid polymer electrolytes, Solid State Ion. 208 (2012) 8–16.

DOI: 10.1016/j.ssi.2011.11.031

Google Scholar

[104] C.W. Walker, Conductivity and Electrochemical Stability of Electrolytes Containing Organic Solvent Mixtures with Lithium tris(Trifluoromethanesulfonyl)methide, J. Electrochem. Soc. 143 (1996) L80.

DOI: 10.1149/1.1836607

Google Scholar

[105] M. Walkowiak, G. Schroeder, B. Gierczyk, D. Waszak, M. Osińska, New lithium ion conducting polymer electrolytes based on polysiloxane grafted with Si-tripodand centers, Electrochem. Commun. 9 (2007) 1558–1562.

DOI: 10.1016/j.elecom.2007.02.019

Google Scholar

[106] M. Walkowiak, D. Waszak, M. Osinska-Broniarz, B. Gierczyk, G. Schroeder, Structure and lithium transport phenomena in a new tripodand-grafted polysiloxane, POLIMERY. 56 (2011) 294–301.

DOI: 10.14314/polimery.2011.294

Google Scholar

[107] Q. Wang, J. Sun, S. Lu, X. Yao, C. Chen, Study on the kinetics properties of lithium hexafluorophosphate thermal decomposition reaction, Solid State Ion. 177 (2006) 137–140.

DOI: 10.1016/j.ssi.2005.09.046

Google Scholar

[108] Y. Wang, F. Fan, A.L. Agapov, T. Saito, J. Yang, X. Yu, K. Hong, J. Mays, A.P. Sokolov, Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes, Polymer. 55 (2014) 4067–4076.

DOI: 10.1016/j.polymer.2014.06.085

Google Scholar

[109] Y. Wang, F. Fan, A.L. Agapov, X. Yu, K. Hong, J. Mays, A.P. Sokolov, Design of superionic polymers—New insights from Walden plot analysis, Solid State Ion. 262 (2014) 782–784.

DOI: 10.1016/j.ssi.2013.09.026

Google Scholar

[110] Y. Wang, A.P. Sokolov, Design of superionic polymer electrolytes, Curr. Opin. Chem. Eng. 7 (2015) 113–119.

Google Scholar

[111] Z. Wang, W. Gao, L. Chen, Y. Mo, X. Huang, Raman and AC Impedance Spectroscopic Studies on Roles of Polyacrylonitrile in Polymer Electrolytes, J. Electrochem. Soc. 149 (2002) E148.

DOI: 10.1149/1.1466862

Google Scholar

[112] Z. Wang, W. Gao, X. Huang, Y. Mo, L. Chen, Ion Transport in Polyacrylonitrile-Based Electrolytes with High LiTFSI Contents, Electrochem. Solid-State Lett. 4 (2001) A148–A150.

DOI: 10.1149/1.1390455

Google Scholar

[113] H.D. Wiemhöfer, Coupling between electron and ion transport in mixed conductors, Solid State Ion. 40-1 (1990) 530–534.

DOI: 10.1016/0167-2738(90)90063-w

Google Scholar

[114] H. -D. Wiemhöfer, M. Grünebaum, M.M. Hiller, Ion-conductive polymeric compound for electrochemical cells, DE102012102162A1, WO2013135824A3, (2013).

Google Scholar

[115] M. Winter, W.K. Appel, B. Evers, T. Hodal, K. -C. Möller, I. Schneider, M. Wachtler, M.R. Wagner, G.H. Wrodnigg, J.O. Besenhard, Studies on the Anode/Electrolyte Interfacein Lithium Ion Batteries, Monatshefte Fuer ChemieChemical Mon. 132 (2001).

DOI: 10.1007/s007060170110

Google Scholar

[116] M. Winter, R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev. 104 (2004) 4245–4270.

DOI: 10.1021/cr020730k

Google Scholar

[117] M.C. Wintersgill, J.J. Fontanella, Y.S. Pak, S.G. Greenbaum, A. Al-Mudaris, A.V. Chadwick, Electrical conductivity, differential scanning calorimetry and nuclear magnetic resonance studies of amorphous poly(ethylene oxide) complexed with sodium salts, Polymer. 30 (1989).

DOI: 10.1016/0032-3861(89)90091-8

Google Scholar

[118] P.V. Wright, Electrical conductivity in ionic complexes of poly(ethylene oxide), Br. Polym. J. 7 (1975) 319–327.

Google Scholar

[119] P.V. Wright, Polymer electrolytes—the early days, Electrochimica Acta. 43 (1998) 1137–1143.

DOI: 10.1016/s0013-4686(97)10011-1

Google Scholar

[120] Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J Mater Chem A. 3 (2015) 19218–19253.

DOI: 10.1039/c5ta03471j

Google Scholar

[121] K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev. 104 (2004) 4303–4418.

DOI: 10.1021/cr030203g

Google Scholar

[122] K. Xu, Electrolytes and Interphases in Li-Ion Batteries and Beyond, Chem. Rev. 114 (2014) 11503–11618.

DOI: 10.1021/cr500003w

Google Scholar

[123] K. Xu, S. Zhang, T.R. Jow, W. Xu, C.A. Angell, LiBOB as Salt for Lithium-Ion Batteries: A Possible Solution for High Temperature Operation, Electrochem. Solid-State Lett. 5 (2002) A26.

DOI: 10.1149/1.1426042

Google Scholar

[124] H. Yang, K. Kwon, T.M. Devine, J.W. Evans, Aluminum Corrosion in Lithium Batteries An Investigation Using the Electrochemical Quartz Crystal Microbalance, J. Electrochem. Soc. 147 (2000) 4399.

DOI: 10.1149/1.1394077

Google Scholar

[125] H. Yang, G.V. Zhuang, P.N. Ross, Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6, J. Power Sources. 161 (2006) 573–579.

DOI: 10.1016/j.jpowsour.2006.03.058

Google Scholar

[126] L. Yang, A. Xiao, B.L. Lucht, Investigation of solvation in lithium ion battery electrolytes by NMR spectroscopy, J. Mol. Liq. 154 (2010) 131–133.

DOI: 10.1016/j.molliq.2010.04.025

Google Scholar

[127] H. -K. Yoon, W. -S. Chung, N. -J. Jo, Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3, Electrochimica Acta. 50 (2004) 289–293.

DOI: 10.1016/j.electacta.2004.01.095

Google Scholar

[128] B. Zhang, Y. Zhou, X. Li, X. Ren, H. Nian, Y. Shen, Q. Yun, FTIR spectroscopic studies of lithium tetrafluoroborate in propylene carbonate+diethyl carbonate mixtures, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 122 (2014) 59–64.

DOI: 10.1016/j.saa.2013.11.054

Google Scholar

[129] B. Zhang, Y. Zhou, X. Li, J. Wang, G. Li, Q. Yun, X. Wang, Li+-molecule interactions of lithium tetrafluoroborate in propylene carbonate + N, N-dimethylformamide mixtures: An FTIR spectroscopic study, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 124 (2014).

DOI: 10.1016/j.saa.2014.01.001

Google Scholar

[130] L.Z. Zhang, Z.C. Zhang, S. Harring, M. Straughan, R. Butorac, Z.H. Chen, L. Lyons, K. Amine, R. West, Highly conductive trimethylsilyl oligo(ethylene oxide) electrolytes for energy storage applications, J. Mater. Chem. 18 (2008) 3713–3717.

DOI: 10.1039/b806290k

Google Scholar

[131] S.S. Zhang, K. Xu, T.R. Jow, Study of LiBF[sub 4] as an Electrolyte Salt for a Li-Ion Battery, J. Electrochem. Soc. 149 (2002) A586.

DOI: 10.1149/1.1466857

Google Scholar

[132] X. Zhang, T.M. Devine, Identity of Passive Film Formed on Aluminum in Li-Ion Battery Electrolytes with LiPF[sub 6], J. Electrochem. Soc. 153 (2006) B344.

DOI: 10.1149/1.2214465

Google Scholar

[133] Z.C. Zhang, L.J. Lyons, K. Amine, R. West, Network-type ionic conductors based on oligoethyleneoxy-functionalized pentamethylcyclopentasiloxanes, Macromolecules. 38 (2005) 5714–5720.

DOI: 10.1021/ma050066k

Google Scholar

[134] Z. Zhang, J. Dong, R. West, K. Amine, Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries, J. Power Sources. 195 (2010) 6062–6068.

DOI: 10.1016/j.jpowsour.2009.12.067

Google Scholar

[135] H. -M. Zhou, F. -R. Liu, J. Li, Y. -F. Li, Y. -H. Zhu, Z. -Q. Fang, Hydrolysis and influences on physical and chemical properties for lithium battery electrolyte LiODFB, Zhongnan Daxue Xuebao Ziran Kexue BanJournal Cent. South Univ. Sci. Technol. 43 (2012).

Google Scholar