Self-Diffusion of the Constituent Elements in Alpha-Alumina, Mullite and Aluminosilicate Glasses

Article Preview

Abstract:

Aluminium is a key element in geological and man-made materials which has only one stable isotope and no radionuclides with half-life times suitable for standard experimental diffusion studies. Here we report on our method using the radioisotope 26Al (t1/2 = 7.4×105 a) as a quasi-stable tracer for aluminium in combination with SIMS depth profiling. First, our data for the aluminium bulk diffusivity in a-alumina are discussed jointly with published oxygen bulk diffusion coefficients. They clearly show that the relation DAl>>D0 is valid in the temperature range 1200 °C ≤ T ≤ 1800 °C. In an analogous manner, the two rare stable isotopes 18O and 30Si are used together with 26Al in diffusion studies of generic examples of materials which either consist of aluminium, silicon and oxygen only, or where these three elements are key constituents of the structure. For the crystalline aluminium silicate mullite our diffusivity data for aluminium, oxygen and silicon are used to explain the kinetics of the solid state formation reaction of mullite and the segregation kinetics of alumina from mullite. Finally, the diffusivities of oxygen and aluminium in model aluminosilicate glasses are presented as a function of temperature for different Al3+/Na+ ratios. For the aluminium silicate mullite and for the aluminosilicate glasses the relation D0>DAl>DSi is valid regardless of the exact composition. For the glass system the activation enthalpies of aluminium and oxygen diffusion decrease with decreasing Al3+/Na+ ratio.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-108

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Philibert, Atom Movements – Diffusion and Mass Transport in Solids, Les Editions de Physique, Les Ulis, 1991, p.98.

Google Scholar

[2] H. Mehrer, Diffusion in Solids – Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer, Berlin, (2007).

Google Scholar

[3] A. Benninghoven, F.G. Rüdenauer, H.W. Werner, Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends, John Wiley and Sons, New York, (1987).

DOI: 10.1002/nadc.19870351213

Google Scholar

[4] F.Y. Fradin, T. J. Rowland, NMR measurement of the diffusion coefficient of pure aluminium, Appl. Phys. Lett. 11 (1967) 207–209.

DOI: 10.1063/1.1755100

Google Scholar

[5] A. Seeger, D. Wolf, H. Mehrer, Analysis of tracer and nuclear magnetic resonance measurements of self-diffusion in aluminium, Phys. Status Solidi B 48 (1971) 481–496.

DOI: 10.1002/pssb.2220480205

Google Scholar

[6] M. Schmücker, K.J.D. MacKenzie, H. Schneider, R. Meinhold, NMR studies on rapidly solidified SiO2–Al2O3 and SiO2–Al2O3–Na2O-glasses, J. Non-Cryst. Solids 217 (1997) 99–105.

DOI: 10.1016/s0022-3093(97)00127-0

Google Scholar

[7] H. Eckert, Structural characterization of noncrystalline solids and glasses using solid state NMR, Prog. Nucl. Magn. Reson. Spectrosc. 24 (1992) 159–293.

DOI: 10.1016/0079-6565(92)80001-v

Google Scholar

[8] D.R. Neuville, L. Cormier, D. Massiot, Al environment in tectosilicate and peraluminous glasses: A 27Al MQ-MAS NMR, Raman, and XANES investigation, Geochim. Cosmochim. Acta 68 (2004) 5071–5079.

DOI: 10.1016/j.gca.2004.05.048

Google Scholar

[9] J.F. Stebbins, S. Kroeker, S.K. Lee, T.J. Kiczenski, Quantification of five- and six-coordinated aluminum ions in aluminosilicate and fluoride-containing glasses by high-field, high-resolution 27Al NMR, J. Non-Cryst. Solids 275 (2000) 1–6.

DOI: 10.1016/s0022-3093(00)00270-2

Google Scholar

[10] L. Züchner , J.C.C. Chan, W. Müller-Warmuth, H. Eckert, Short-Range Order and Site Connectivities in Sodium Aluminoborate Glasses:  I. Quantification of Local Environments by High-Resolution 11B, 23Na, and 27Al Solid-State NMR, J. Phys. Chem. B 102 (1998).

DOI: 10.1002/chin.199833013

Google Scholar

[11] S. -B. Liu, J.F. Stebbins, E. Schneider, A. Pines, Diffusive motion in alkali silicate melts: An NMR study at high temperature, Geochimica et Cosmochimica Acta 52 (1988) 527–538.

DOI: 10.1016/0016-7037(88)90108-1

Google Scholar

[12] I. Farnan, J.F. Stebbins, High-temperature 29Si NMR investigation of solid and molten silicates, J. Am. Chem. Soc. 112 (1990) 32–39.

DOI: 10.1021/ja00157a008

Google Scholar

[13] J.F. Stebbins, Nuclear magnetic resonance at high temperature, Chem. Rev. 91 (1991) 1353–1373.

DOI: 10.1021/cr00007a004

Google Scholar

[14] T. Viefhaus, T. Bolse, K. Müller, Oxygen ion dynamics in yttria-stabilized zirconia as evaluated by solid-state 17O NMR spectroscopy, Solid State Ionics 177 (2006) 3063–3068.

DOI: 10.1016/j.ssi.2006.07.040

Google Scholar

[15] K. Fuda, K. Kishio, S. Yamauchi, K. Fueki, Y. Onoda, 17O NMR study of Y2O3-doped CeO2, J. Phys. Chem. Solids 45 (1984) 1253–1257.

DOI: 10.1016/0022-3697(84)90024-6

Google Scholar

[16] K. Fuda, K. Kishio, S. Yamauchi, K. Fueki, Study on vacancy motion in Y2O3-doped CeO2 by 17O NMR technique, J. Phys. Chem. Solids 46 (1985) 1141–1146.

DOI: 10.1016/0022-3697(85)90142-8

Google Scholar

[17] S.B. Adler, J.W. Smith, J.A. Reimer, Dynamic Monte Carlo simulation of spin-lattice relaxation of quadrupolar nuclei in solids. Oxygen-17 in yttria-doped ceria, J. Chem. Phys. 98 (1993) 7613–7620.

DOI: 10.1063/1.464701

Google Scholar

[18] S.B. Adler, J.W. Smith, Effects of Long-range Forces on Oxygen Transport in Yttria-doped Ceria: Simulation and Theory, J. Chem. Soc. Faraday Trans. 89 (1993) 3123–3128.

DOI: 10.1039/ft9938903123

Google Scholar

[19] J.A. Kilner, B.C.H. Steele, L. Ilkov, Oxygen self-diffusion studies using negative-ion secondary ion mass spectrometry (SIMS), Solid State Ionics 12 (1984) 89–97.

DOI: 10.1016/0167-2738(84)90134-6

Google Scholar

[20] R.J. Chater, S. Carter, J.A. Kilner, B.C.H. Steele, Development of a novel SIMS technique for oxygen self-diffusion and surface exchange coefficient measurements in oxides of high diffusivity, Solid State Ionics 53–56 (1992) 859–867.

DOI: 10.1016/0167-2738(92)90266-r

Google Scholar

[21] P. Fielitz, G. Borchardt, On the accurate measurement of oxygen self-diffusivities and surface exchange coefficients in oxides via SIMS depth profiling, Solid State Ionics 144 (2001) 71–80.

DOI: 10.1016/s0167-2738(01)00893-1

Google Scholar

[22] P. Fielitz, G. Borchardt, M. Schmücker, H. Schneider, How to measure volume diffusivities and grain boundary diffusivities of oxygen in polycrystalline oxides, Solid State Ionics 160 (2003) 75–83.

DOI: 10.1016/s0167-2738(03)00155-3

Google Scholar

[23] H. Mehrer, M. Eggersmann, A. Gude, M. Salamon, B. Sepiol, Diffusion in intermetallic phases of the Fe–Al and Fe–Si systems, Materials Science and Engineering A239–240 (1997) 889–898.

DOI: 10.1016/s0921-5093(97)00680-1

Google Scholar

[24] H.A. Schaeffer, The Application of Silicon-30 in Self-Diffusion Investigations, Phys. Stat. Sol. (A) 22 (1974) 281–291.

DOI: 10.1002/pssa.2210220132

Google Scholar

[25] M. Wellen, P. Fielitz, G. Borchardt, S. Weber, S. Scherrer, H. Mehrer, H. Baumann, B. Sepiol, Diffusion of Si and Ge in the Intermetallic Phase Fe3Si: Ion Implantation and SIMS Studies, Defect and Diffusion Forum Vols. 194-199 (2001) 499–504.

DOI: 10.4028/www.scientific.net/ddf.194-199.499

Google Scholar

[26] F. Béjina, O. Jaoul, Silicon diffusion in silicate minerals, Earth Plan. Sci. Lett. 153 (1997) 229–238.

DOI: 10.1016/s0012-821x(97)00190-8

Google Scholar

[27] O. Jaoul, M. Poumellec, C. Froidevaux, A. Havette, Silicon Diffusion in Forsterite: A new constraint for Understanding Mantle Deformation, in: F.D. Stacey, M.S. Paterson, A. Nicolas (Eds. ), Anelasticity in the Earth, American Geophysical Union, Washington, 1981, p.95.

DOI: 10.1029/gd004p0095

Google Scholar

[28] K. Andersson, G. Borchardt, S. Scherrer, S. Weber, Self-diffusion in Mg2SiO4 (forsterite) at high temperature, Fresenius Z. Anal. Chem. 333 (1989) 383–385.

DOI: 10.1007/bf00572330

Google Scholar

[29] P. Fielitz, G. Borchardt, M. Schmücker, H. Schneider, Silicon tracer diffusion in single crystalline 2/1-mullite measured by SIMS depth profiling, Phys. Chem. Chem. Phys. 5 (2003) 2279–2282.

DOI: 10.1039/b300145h

Google Scholar

[30] C.M. Lederer, J.M. Hollander, I. Perlman, Table of Isotopes, 6th ed., J. Wiley and Sons, Inc., New York, (1967).

Google Scholar

[31] J.M. Ferguson, Al26 Decay Scheme, Phys. Rev. 112 (1958) 1238 –1240.

Google Scholar

[32] G.H. Frischat, Evidence for Calcium and Aluminum Diffusion in SiO2 Glass, J. Am. Ceram. Soc. 52 (1969) 625.

Google Scholar

[33] A.E. Paladino, W.D. Kingery, Aluminum Ion Diffusion in Aluminum Oxide, J. Chem. Phys. 37 (1962) 957–962.

DOI: 10.1063/1.1733252

Google Scholar

[34] M. Le Gall, B. Lesage, J. Bernardini, Self-diffusion in a-Al2O3 I. Aluminium diffusion in single crystals, Phil. Mag. A 70 (1994) 761–773.

DOI: 10.1080/01418619408242929

Google Scholar

[35] P. Fielitz, G. Borchardt, M. Schmücker, H. Schneider, Al-26 diffusion measurement in 2/1-mullite by means of Secondary Ion Mass Spectrometry, Solid State Ionics 177 (2006) 493–496.

DOI: 10.1016/j.ssi.2005.11.012

Google Scholar

[36] D.R. Baker, Tracer diffusion of network formers and multicomponent diffusion in dacitic and rhyolitic melts, Geochimica et Cosmochimica Acta 56 (1992) 617–631.

DOI: 10.1016/0016-7037(92)90086-x

Google Scholar

[37] D.R. Baker, Diffusion of silicon and gallium (as an analogue for aluminum) network-forming cations and their relationship to viscosity in albite melt, Geochimica et Cosmochimica Acta 59 (1995) 3561–3571.

DOI: 10.1016/0016-7037(95)00269-6

Google Scholar

[38] A. Gude, B. Sepiol, G. Vogl, H. Mehrer, Diffusion in the Intermetallic Phase Fe3Si Studied by Tracer and Mößbauer Techniques, Defects and Diffusion Forum Vols. 143-147 (1997) 351–358.

DOI: 10.4028/www.scientific.net/ddf.143-147.351

Google Scholar

[39] G. Borchardt, H. Schmalzried, Silikatbildung im festen Zustand, Zeitschrift für Physikalische Chemie 74 (1971) 265–283.

DOI: 10.1524/zpch.1971.74.3_6.265

Google Scholar

[40] J. Jedlinski, G. Borchardt, On the Oxidation Mechanism of Alumina Formers, Oxid. Met. 36 (1991) 317–337.

DOI: 10.1007/bf00662968

Google Scholar

[41] R. Prescott, M. J. Graham, The Formation of Aluminum Oxide Scales on High-Temperature Alloys, Oxid. Met. 38 (1992) 233–254.

DOI: 10.1007/bf00666913

Google Scholar

[42] P.Y. Hou, Impurity Effects on Alumina Scale Growth, J. Am. Ceram. Soc. 86 (2003) 660–668.

Google Scholar

[43] S. Chevalier, Formation and Growth of Protective Alumina Scales, in: W. Gao (Ed. ), Developments in High Temperature Corrosion and Protection of Materials, CRC Press, Boca Raton, 2008, p.290–329.

DOI: 10.1533/9781845694258.2.290

Google Scholar

[44] A.H. Heuer, D.B. Hovis, J.L. Smialek, B. Gleeson, Alumina Scale Formation: A New Perspective, J. Am. Ceram. Soc. 94 (2011) S146–S153.

DOI: 10.1111/j.1551-2916.2011.04573.x

Google Scholar

[45] R.H. Doremus, Diffusion of reactive molecules in solids and melts, Wiley & Sons, New York, (2002).

Google Scholar

[46] R.H. Doremus, Diffusion in alumina, J. Appl. Phys. 100 (2006) 101301-1–17.

Google Scholar

[47] J.H. Harding, K.J.W. Atkinson, R.W. Grimes, Experiment and Theory of Diffusion in Alumina, J. Am. Ceram. Soc. 86 (2003) 554–559.

Google Scholar

[48] A.H. Heuer, Oxygen and aluminum diffusion in a-Al2O3: How much do we really understand?, J. Eur. Ceram. Soc. 28 (2008) 1495–1507.

DOI: 10.1016/j.jeurceramsoc.2007.12.020

Google Scholar

[49] G. Borchardt, K. Gömann, M. Kilo, H. Schmidt, Diffusion in Ceramics, in Ceramics Science and Technology, Vol. 1: Structures (eds R. Riedel and I. -W. Chen), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008, p.105–181.

DOI: 10.1002/9783527631926.ch4

Google Scholar

[50] D. Prot, M. Le Gall, B. Lesage, A. M. Huntz, C. Monty, Self-diffusion in α-Al2O3: IV. Oxygen grain-boundary self-diffusion in undoped and yttria-doped alumina polycrystals, Phil. Mag. A 73 (1996) 935–949.

DOI: 10.1080/01418619608243697

Google Scholar

[51] X. Tang, K.P.D. Lagerlöf, A.H. Heuer, Determination of pipe diffusion coefficients in undoped and magnesia-doped sapphire (a-Al2O3): A study based on annihilation of dislocation dipoles, J. Am. Ceram. Soc. 86 (2003) 560–565.

DOI: 10.1111/j.1151-2916.2003.tb03341.x

Google Scholar

[52] J.H. Harding, Short-circuit diffusion in ceramics, Interface Science 11 (2003) 81–90.

Google Scholar

[53] K.P.D. Lagerlöf, T.E. Mitchell, A.H. Heuer, Lattice diffusion kinetics in undoped and impurity-doped sapphire (a-Al2O3): A dislocation loop annealing study, J. Am. Ceram. Soc. 72 (1989) 2159–2171.

DOI: 10.1111/j.1151-2916.1989.tb06049.x

Google Scholar

[54] K.P.R. Reddy, A.R. Cooper, Oxygen Diffusion in Sapphire, J. Am. Ceram. Soc. 65 (1982) 634–638.

Google Scholar

[55] Y. Oishi, K. Ando, Y. Kubota, Self Diffusion of Oxygen in Single Crystal Alumina, J. Chem. Phys. 73 (1980) 1410–1412.

DOI: 10.1063/1.440201

Google Scholar

[56] Y. Oishi, K. Ando, N. Suga, W.D. Kingery, Effect of Surface Condition on Oxygen Self-Diffusion Coefficients for Single Crystal Al2O3, J. Am. Ceram. Soc. 66 (1983) C130–C131.

DOI: 10.1111/j.1151-2916.1983.tb10106.x

Google Scholar

[57] D.J. Reed, B.J. Wuensch, Ion Probe Measurement of Oxygen Self-Diffusion in Single Crystal Al2O3, J. Am. Ceram. Soc. 63 (1980) 88–92.

DOI: 10.1111/j.1151-2916.1980.tb10655.x

Google Scholar

[58] D. Prot, C. Monty, Self-diffusion in a-Al2O3: II. Oxygen diffusion in undoped, single crystals, Phil. Mag. A 73 (1996) 899–917.

DOI: 10.1080/01418619608243695

Google Scholar

[59] J.C. Amante, J.D. Cawley, J. Kim, T.R. Lemberger, Oxygen tracer diffusion in SrTiO3 and thin films of YBa2Cu3O7-x on SrTiO3, in T.O. Mason and J.C. Routbort, Point Defects and Related Properties of Ceramics, The American Ceramic Society, Westerville, Ohio, 1991, p.24.

Google Scholar

[60] A.H. Heuer, K.P.D. Lagerlöf, Oxygen self-diffusion in corundum (a-Al2O3): A conundrum. Phil. Mag. Lett. 79 (1999) 619–628.

Google Scholar

[61] P. Fielitz, G. Borchardt, S. Ganschow, R. Bertram, 26Al tracer diffusion in nominally undoped single crystalline a-Al2O3, Defect and Diffusion Forum 323-325 (2012) 75–79.

DOI: 10.4028/www.scientific.net/ddf.323-325.75

Google Scholar

[62] P. Fielitz, G. Borchardt, S. Ganschow, R. Bertram, A. Markwitz, 26Al tracer diffusion in titanium doped single crystalline a-Al2O3, Solid State Ionics 179 (2008) 373–379.

DOI: 10.1016/j.ssi.2008.03.007

Google Scholar

[63] S.K. Mohapatra, F.A. Kröger, Defect Structure of a-Al2O3 Doped with Titanium, J. Am. Ceram. Soc. 60 (1977) 381–387.

Google Scholar

[64] G.J. Dienes, D.O. Welch, C.R. Fischer, R.D. Hatcher, O. Lazareth, M. Samberg, Shell-model calculation of some point-defect properties in a-Al2O3, Phys. Rev. B 11 (1975) 3060–3070.

DOI: 10.1103/physrevb.11.3060

Google Scholar

[65] P.W.M. Jacobs, E.A. Kotomin, Defect energies for pure corundum and for corundum doped with transition metal ions, Phil. Mag. A 68 (1993) 695–709.

DOI: 10.1080/01418619308213992

Google Scholar

[66] J.D. Cawley, J.W. Halloran, A.R. Cooper, Oxygen Tracer Diffusion in Single-Crystal Alumina, J. Am. Ceram. Soc. 74 (1991) 2086–(2092).

DOI: 10.1111/j.1151-2916.1991.tb08264.x

Google Scholar

[67] E. -G. Gontier-Moya, F. Moya, J. Bernardini, A new diffusion mechanism for self-compensating impurities in α-alumina. Z. Metallkd. 95 (2004) 888–894.

DOI: 10.1515/ijmr-2004-0166

Google Scholar

[68] H. Schneider, K. Okada, J. A. Pask, Mullite and mullite ceramics, John Wiley & Sons, Chichester, 1994, p.199–248.

Google Scholar

[69] R.J. Angel, C.T. Prewitt, Crystal structure of mullite: A re-examination of the average structure, Amer. Min. 71 (1986) 1476–1482.

Google Scholar

[70] M. Schmücker, H. Schneider, K.J.D. MacKenzie, M.E. Smith, D.L. Carroll, AlO4/SiO4 Distribution in Tetrahedral Double Chains of Mullite, J. Am. Ceram. Soc. 88 (2005) 2935–2937.

DOI: 10.1111/j.1551-2916.2005.00500.x

Google Scholar

[71] H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite – A review, J. Eur. Ceram. Soc. 28 (2008) 329–344.

Google Scholar

[72] P. Fielitz, G. Borchardt, M. Schmücker, H. Schneider, M. Wiedenbeck, D. Rhede, S. Weber, S. Scherrer, Secondary Ion Mass Spectroscopy Study of Oxygen-18 Tracer Diffusion in 2/1-Mullite Single Crystals, J. Am. Ceram. Soc. 84 (2001) 2845–2848.

DOI: 10.1111/j.1151-2916.2001.tb01103.x

Google Scholar

[73] Y. Ikuma, E. Shimada, S. Sakano, M. Oishi, M. Yokoyama, Z. Nakagawa, Oxygen Self-diffusion in Cylindrical Single-Crystal Mullite, J. Electrochem. Soc. 146 (1999) 4672–4675.

DOI: 10.1149/1.1392692

Google Scholar

[74] J. Luo, D.P. Almond, R. Stevens, Ionic Mobilities and Association Energies from an Analysis of Electrical Impedance of ZrO2-Y2O3 Alloys, J. Am. Ceram. Soc. 83 (2000) 1703–1708.

DOI: 10.1111/j.1151-2916.2000.tb01453.x

Google Scholar

[75] J. Claus, G. Borchardt, S. Weber, J. -M. Hiver, S. Scherrer, Combination of EBSP measurements and SIMS to study crystallographic orientation dependence of diffusivities in a polycrystalline material: oxygen tracer diffusion in La2-xSrxCuO4±d, Materials Science and Engineering B38 (1996).

DOI: 10.1016/0921-5107(95)01446-2

Google Scholar

[76] J. Claus, G. Borchardt, Oxygen Diffusion and Surface Exchange Kinetics in YBa2Cu3O6+x, Zeitschrift für Physikalische Chemie 206 (1998) 49–71.

DOI: 10.1524/zpch.1998.206.part_1_2.049

Google Scholar

[77] E. Ruiz-Trejo, J.A. Kilner, Oxygen diffusion and proton conduction in La1-xSrxYO3-d, Solid State Ionics 97 (1997) 529–534.

DOI: 10.1016/s0167-2738(97)00024-6

Google Scholar

[78] C.R.A. Catlow and W.C. Mackrodt (eds. ), Computer Simulation of Solids, in Lecture Notes in Physics 166, Springer–Verlag, Berlin and Heidelberg, FRG, and New York, (1982).

DOI: 10.1002/crat.2170181125

Google Scholar

[79] L. Wondraczek, G. Heide, M. Kilo, N. Nedeljkovic, G. Borchardt, R.A. Jackson, Computer simulation of defect structure in sillimanite and mullites, Phys. Chem. Minerals 29 (2002) 341–345.

DOI: 10.1007/s00269-002-0242-x

Google Scholar

[80] O. Gerard and O. Jaoul, Oxygen Diffusion in Olivine, J. Geophys. Res. 94 (1998) 4119–4128.

Google Scholar

[81] P.G. Shewmon, Diffusion in Solids, McGraw–Hill Series in Materials Science and Engineering, McGraw–Hill, New York, 1963, p.40–85.

Google Scholar

[82] K.P.R. Reddy, Oxygen Diffusion in Close Packed Oxides, Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, (1979).

Google Scholar

[83] P. Fielitz, G. Borchardt, H. Schneider, M. Schmücker, M. Wiedenbeck, D. Rhede, Self-diffusion of oxygen in mullite, J. Eur. Ceram. Soc. 21 (2001) 2577–2582.

DOI: 10.1016/s0955-2219(01)00276-x

Google Scholar

[84] P. Fielitz, G. Borchardt, M. Schmücker, H. Schneider, A diffusion-controlled mullite formation reaction model based on tracer diffusivity data for aluminium, silicon and oxygen, Phil. Mag. 87 (2007) 111–127.

DOI: 10.1080/14786430600917231

Google Scholar

[85] I.A. Aksay, J.A. Pask, Stable and metastable equilibria in the system SiO2-Al2O3, J. Am. Ceram. Soc. 58 (1975) 507–512.

Google Scholar

[86] P. Fielitz, G. Borchardt, P. Mechnich, M. Schmücker, Kinetics of alumina segregation in mullite ceramics, J. Eur. Ceram. Soc. 28 (2008) 401–406.

DOI: 10.1016/j.jeurceramsoc.2007.03.014

Google Scholar

[87] P. Fielitz, G. Borchardt, Oxygen Grain-Boundary Diffusion in Polycrystalline Mullite Ceramics, J. Am. Ceram. Soc. 87 (2004) 2232–2236.

DOI: 10.1111/j.1151-2916.2004.tb07497.x

Google Scholar

[88] P. Fielitz, G. Borchardt, M. Schmücker, H. Schneider, Aluminium grain boundary diffusion in polycrystalline mullite ceramics, Phys. Chem. Minerals 34 (2007) 431–436.

DOI: 10.1007/s00269-007-0159-5

Google Scholar

[89] Y. -M. Sung, Kinetics analysis of mullite formation reaction at high temperatures, Acta mater. 48 (2000) 2157–2162.

DOI: 10.1016/s1359-6454(00)00032-x

Google Scholar

[90] I. Barin, Thermochemical Data of Pure Substances, Parts I+II, VCH, Weinheim, (1989).

Google Scholar

[91] M.W. Chase Jr, C.A. Davies, J.R. Downey Jr, et al., JANAF Thermochemical Tables, 3rd edn, ACS/AIP/NBS, New York, (1986).

Google Scholar

[92] F. J. Klug, S. Prochazka, R.H. Doremus, Alumina-silica phase diagram in the mullite region, J. Am. Ceram. Soc. 70 (1987) 750–759.

DOI: 10.1111/j.1151-2916.1987.tb04875.x

Google Scholar

[93] J. Crank, The Mathematics of Diffusion, 2nd Edn., Oxford Univ. Press., (1975).

Google Scholar

[94] H. Scholze, Glas: Natur, Struktur und Eigenschaften, Springer, Berlin, Heidelberg, New York, (1988).

Google Scholar

[95] H. Jain, C. H. Hsieh, Diffusion in Oxide Glasses, subvol. B1, in: D. L. Beke (Ed. ) Diffusion in Semiconductors and Non-metallic Solids, Landolt-Börnstein Series, Condensed Matter, vol. 33, , Springer, Berlin, 1999, p.1, Chapter 7.

DOI: 10.1007/10542761_14

Google Scholar

[96] J. Horbach, W. Kob, K. Binder, Dynamics of Sodium in Sodium Disilicate: Channel Relaxation and Sodium Diffusion, Phys. Rev. Lett. 88 (2002) 125502-1–4.

DOI: 10.1103/physrevlett.88.125502

Google Scholar

[97] M.M. Smedskjaer, Q. Zheng, J.C. Mauro, M. Potuzak, S. Mørup, Y. Yue, Sodium diffusion in boroaluminosilicate glasses, J. Non-Cryst. Solids 357 (2011) 3744–3750.

DOI: 10.1016/j.jnoncrysol.2011.07.008

Google Scholar

[98] K. Sunder, M. Grofmeier, R. Staskunaite, H. Bracht, Dynamics of Network Formers and Modifiers in Mixed Cation Silicate Glasses, Z. Phys. Chem. 224 (2010) 1677–1705.

DOI: 10.1524/zpch.2010.0023

Google Scholar

[99] D.E. Day, Mixed alkali glasses – Their properties and uses, J. Non-Cryst. Solids 21 (1976) 343–372.

DOI: 10.1016/0022-3093(76)90026-0

Google Scholar

[100] H. Jain, N.L. Peterson, H.L. Downing, Tracer diffusion and electrical conductivity in sodium-cesium silicate glasses, J. Non-Cryst. Solids 55 (1983) 283–300.

DOI: 10.1016/0022-3093(83)90676-2

Google Scholar

[101] J. Kirchhof, S. Unger, B. Knappe, Diffusion coefficients of aluminium and rare earths in vitreous silica, Proc. XIX Int. Congr. Glass, Edinburgh, 1–6 July 2001, Phys. Chem. Glasses 43C (2002) 499–502.

Google Scholar

[102] H.J. Windhager, G. Borchardt, Tracerdiffusion und Fehlordnung in dem Orthosilikat Co2SiO4, Ber. Bunsenges. physik. Chem. 79 (1975) 1115–1119.

DOI: 10.1002/bbpc.19750791137

Google Scholar

[103] G. Brébec, R. Seguin, C. Sella, J. Bevenot, J.C. Martin, Diffusion du silicium dans la silice amorphe, Acta Metall. 28 (1980) 327–333.

DOI: 10.1016/0001-6160(80)90168-6

Google Scholar

[104] M. Lepke, P. Fielitz, G. Borchardt, G.H. Frischat, A. Goβ, E. Pösl, Simultaneous aluminium-26 and oxygen-18 transport in an alumosilicate glass, J. Non-Cryst. Solids 356 (2010) 1604–1606.

DOI: 10.1016/j.jnoncrysol.2010.05.065

Google Scholar

[105] M. Lepke, P. Fielitz, G. Borchardt, G.H. Frischat, A. Goβ, E. Pösl, Aluminium-26 and oxygen-18 tracer diffusion measurements in an aluminosilicate glass: temperature dependence, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 51 (2010).

DOI: 10.1016/j.jnoncrysol.2010.05.065

Google Scholar

[106] M. Lepke, P. Fielitz, G. Borchardt, G.H. Frischat, Oxygen-18, aluminium-26 and silicon-30 self diffusion in aluminosilicate glasses, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 54 (2013) 15–19.

Google Scholar

[107] H.A. Schaeffer, Diffusion-controlled processes in glass forming melts, J. Non-Cryst. Solids 67 (1984) 19–33.

DOI: 10.1016/0022-3093(84)90138-8

Google Scholar

[108] M.A. Lamkin, F.L. Riley, R.J. Fordham, Oxygen mobility in silicon dioxide and silicate glasses: a review, J. Eur. Cer. Soc. 10 (1992) 347–367.

DOI: 10.1016/0955-2219(92)90010-b

Google Scholar