p.1
p.31
p.80
p.109
p.129
Self-Diffusion of the Constituent Elements in Alpha-Alumina, Mullite and Aluminosilicate Glasses
Abstract:
Aluminium is a key element in geological and man-made materials which has only one stable isotope and no radionuclides with half-life times suitable for standard experimental diffusion studies. Here we report on our method using the radioisotope 26Al (t1/2 = 7.4×105 a) as a quasi-stable tracer for aluminium in combination with SIMS depth profiling. First, our data for the aluminium bulk diffusivity in a-alumina are discussed jointly with published oxygen bulk diffusion coefficients. They clearly show that the relation DAl>>D0 is valid in the temperature range 1200 °C ≤ T ≤ 1800 °C. In an analogous manner, the two rare stable isotopes 18O and 30Si are used together with 26Al in diffusion studies of generic examples of materials which either consist of aluminium, silicon and oxygen only, or where these three elements are key constituents of the structure. For the crystalline aluminium silicate mullite our diffusivity data for aluminium, oxygen and silicon are used to explain the kinetics of the solid state formation reaction of mullite and the segregation kinetics of alumina from mullite. Finally, the diffusivities of oxygen and aluminium in model aluminosilicate glasses are presented as a function of temperature for different Al3+/Na+ ratios. For the aluminium silicate mullite and for the aluminosilicate glasses the relation D0>DAl>DSi is valid regardless of the exact composition. For the glass system the activation enthalpies of aluminium and oxygen diffusion decrease with decreasing Al3+/Na+ ratio.
Info:
Periodical:
Pages:
80-108
Citation:
Online since:
July 2016
Authors:
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] J. Philibert, Atom Movements – Diffusion and Mass Transport in Solids, Les Editions de Physique, Les Ulis, 1991, p.98.
[2] H. Mehrer, Diffusion in Solids – Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer, Berlin, (2007).
[3] A. Benninghoven, F.G. Rüdenauer, H.W. Werner, Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends, John Wiley and Sons, New York, (1987).
[4] F.Y. Fradin, T. J. Rowland, NMR measurement of the diffusion coefficient of pure aluminium, Appl. Phys. Lett. 11 (1967) 207–209.
DOI: 10.1063/1.1755100
[5] A. Seeger, D. Wolf, H. Mehrer, Analysis of tracer and nuclear magnetic resonance measurements of self-diffusion in aluminium, Phys. Status Solidi B 48 (1971) 481–496.
[6] M. Schmücker, K.J.D. MacKenzie, H. Schneider, R. Meinhold, NMR studies on rapidly solidified SiO2–Al2O3 and SiO2–Al2O3–Na2O-glasses, J. Non-Cryst. Solids 217 (1997) 99–105.
[7] H. Eckert, Structural characterization of noncrystalline solids and glasses using solid state NMR, Prog. Nucl. Magn. Reson. Spectrosc. 24 (1992) 159–293.
[8] D.R. Neuville, L. Cormier, D. Massiot, Al environment in tectosilicate and peraluminous glasses: A 27Al MQ-MAS NMR, Raman, and XANES investigation, Geochim. Cosmochim. Acta 68 (2004) 5071–5079.
[9] J.F. Stebbins, S. Kroeker, S.K. Lee, T.J. Kiczenski, Quantification of five- and six-coordinated aluminum ions in aluminosilicate and fluoride-containing glasses by high-field, high-resolution 27Al NMR, J. Non-Cryst. Solids 275 (2000) 1–6.
[10] L. Züchner , J.C.C. Chan, W. Müller-Warmuth, H. Eckert, Short-Range Order and Site Connectivities in Sodium Aluminoborate Glasses: I. Quantification of Local Environments by High-Resolution 11B, 23Na, and 27Al Solid-State NMR, J. Phys. Chem. B 102 (1998).
[11] S. -B. Liu, J.F. Stebbins, E. Schneider, A. Pines, Diffusive motion in alkali silicate melts: An NMR study at high temperature, Geochimica et Cosmochimica Acta 52 (1988) 527–538.
[12] I. Farnan, J.F. Stebbins, High-temperature 29Si NMR investigation of solid and molten silicates, J. Am. Chem. Soc. 112 (1990) 32–39.
DOI: 10.1021/ja00157a008
[13] J.F. Stebbins, Nuclear magnetic resonance at high temperature, Chem. Rev. 91 (1991) 1353–1373.
DOI: 10.1021/cr00007a004
[14] T. Viefhaus, T. Bolse, K. Müller, Oxygen ion dynamics in yttria-stabilized zirconia as evaluated by solid-state 17O NMR spectroscopy, Solid State Ionics 177 (2006) 3063–3068.
[15] K. Fuda, K. Kishio, S. Yamauchi, K. Fueki, Y. Onoda, 17O NMR study of Y2O3-doped CeO2, J. Phys. Chem. Solids 45 (1984) 1253–1257.
[16] K. Fuda, K. Kishio, S. Yamauchi, K. Fueki, Study on vacancy motion in Y2O3-doped CeO2 by 17O NMR technique, J. Phys. Chem. Solids 46 (1985) 1141–1146.
[17] S.B. Adler, J.W. Smith, J.A. Reimer, Dynamic Monte Carlo simulation of spin-lattice relaxation of quadrupolar nuclei in solids. Oxygen-17 in yttria-doped ceria, J. Chem. Phys. 98 (1993) 7613–7620.
DOI: 10.1063/1.464701
[18] S.B. Adler, J.W. Smith, Effects of Long-range Forces on Oxygen Transport in Yttria-doped Ceria: Simulation and Theory, J. Chem. Soc. Faraday Trans. 89 (1993) 3123–3128.
DOI: 10.1039/ft9938903123
[19] J.A. Kilner, B.C.H. Steele, L. Ilkov, Oxygen self-diffusion studies using negative-ion secondary ion mass spectrometry (SIMS), Solid State Ionics 12 (1984) 89–97.
[20] R.J. Chater, S. Carter, J.A. Kilner, B.C.H. Steele, Development of a novel SIMS technique for oxygen self-diffusion and surface exchange coefficient measurements in oxides of high diffusivity, Solid State Ionics 53–56 (1992) 859–867.
[21] P. Fielitz, G. Borchardt, On the accurate measurement of oxygen self-diffusivities and surface exchange coefficients in oxides via SIMS depth profiling, Solid State Ionics 144 (2001) 71–80.
[22] P. Fielitz, G. Borchardt, M. Schmücker, H. Schneider, How to measure volume diffusivities and grain boundary diffusivities of oxygen in polycrystalline oxides, Solid State Ionics 160 (2003) 75–83.
[23] H. Mehrer, M. Eggersmann, A. Gude, M. Salamon, B. Sepiol, Diffusion in intermetallic phases of the Fe–Al and Fe–Si systems, Materials Science and Engineering A239–240 (1997) 889–898.
[24] H.A. Schaeffer, The Application of Silicon-30 in Self-Diffusion Investigations, Phys. Stat. Sol. (A) 22 (1974) 281–291.
[25] M. Wellen, P. Fielitz, G. Borchardt, S. Weber, S. Scherrer, H. Mehrer, H. Baumann, B. Sepiol, Diffusion of Si and Ge in the Intermetallic Phase Fe3Si: Ion Implantation and SIMS Studies, Defect and Diffusion Forum Vols. 194-199 (2001) 499–504.
[26] F. Béjina, O. Jaoul, Silicon diffusion in silicate minerals, Earth Plan. Sci. Lett. 153 (1997) 229–238.
[27] O. Jaoul, M. Poumellec, C. Froidevaux, A. Havette, Silicon Diffusion in Forsterite: A new constraint for Understanding Mantle Deformation, in: F.D. Stacey, M.S. Paterson, A. Nicolas (Eds. ), Anelasticity in the Earth, American Geophysical Union, Washington, 1981, p.95.
DOI: 10.1029/gd004p0095
[28] K. Andersson, G. Borchardt, S. Scherrer, S. Weber, Self-diffusion in Mg2SiO4 (forsterite) at high temperature, Fresenius Z. Anal. Chem. 333 (1989) 383–385.
DOI: 10.1007/bf00572330
[29] P. Fielitz, G. Borchardt, M. Schmücker, H. Schneider, Silicon tracer diffusion in single crystalline 2/1-mullite measured by SIMS depth profiling, Phys. Chem. Chem. Phys. 5 (2003) 2279–2282.
DOI: 10.1039/b300145h
[30] C.M. Lederer, J.M. Hollander, I. Perlman, Table of Isotopes, 6th ed., J. Wiley and Sons, Inc., New York, (1967).
[31] J.M. Ferguson, Al26 Decay Scheme, Phys. Rev. 112 (1958) 1238 –1240.
[32] G.H. Frischat, Evidence for Calcium and Aluminum Diffusion in SiO2 Glass, J. Am. Ceram. Soc. 52 (1969) 625.
[33] A.E. Paladino, W.D. Kingery, Aluminum Ion Diffusion in Aluminum Oxide, J. Chem. Phys. 37 (1962) 957–962.
DOI: 10.1063/1.1733252
[34] M. Le Gall, B. Lesage, J. Bernardini, Self-diffusion in a-Al2O3 I. Aluminium diffusion in single crystals, Phil. Mag. A 70 (1994) 761–773.
[35] P. Fielitz, G. Borchardt, M. Schmücker, H. Schneider, Al-26 diffusion measurement in 2/1-mullite by means of Secondary Ion Mass Spectrometry, Solid State Ionics 177 (2006) 493–496.
[36] D.R. Baker, Tracer diffusion of network formers and multicomponent diffusion in dacitic and rhyolitic melts, Geochimica et Cosmochimica Acta 56 (1992) 617–631.
[37] D.R. Baker, Diffusion of silicon and gallium (as an analogue for aluminum) network-forming cations and their relationship to viscosity in albite melt, Geochimica et Cosmochimica Acta 59 (1995) 3561–3571.
[38] A. Gude, B. Sepiol, G. Vogl, H. Mehrer, Diffusion in the Intermetallic Phase Fe3Si Studied by Tracer and Mößbauer Techniques, Defects and Diffusion Forum Vols. 143-147 (1997) 351–358.
[39] G. Borchardt, H. Schmalzried, Silikatbildung im festen Zustand, Zeitschrift für Physikalische Chemie 74 (1971) 265–283.
[40] J. Jedlinski, G. Borchardt, On the Oxidation Mechanism of Alumina Formers, Oxid. Met. 36 (1991) 317–337.
DOI: 10.1007/bf00662968
[41] R. Prescott, M. J. Graham, The Formation of Aluminum Oxide Scales on High-Temperature Alloys, Oxid. Met. 38 (1992) 233–254.
DOI: 10.1007/bf00666913
[42] P.Y. Hou, Impurity Effects on Alumina Scale Growth, J. Am. Ceram. Soc. 86 (2003) 660–668.
[43] S. Chevalier, Formation and Growth of Protective Alumina Scales, in: W. Gao (Ed. ), Developments in High Temperature Corrosion and Protection of Materials, CRC Press, Boca Raton, 2008, p.290–329.
[44] A.H. Heuer, D.B. Hovis, J.L. Smialek, B. Gleeson, Alumina Scale Formation: A New Perspective, J. Am. Ceram. Soc. 94 (2011) S146–S153.
[45] R.H. Doremus, Diffusion of reactive molecules in solids and melts, Wiley & Sons, New York, (2002).
[46] R.H. Doremus, Diffusion in alumina, J. Appl. Phys. 100 (2006) 101301-1–17.
[47] J.H. Harding, K.J.W. Atkinson, R.W. Grimes, Experiment and Theory of Diffusion in Alumina, J. Am. Ceram. Soc. 86 (2003) 554–559.
[48] A.H. Heuer, Oxygen and aluminum diffusion in a-Al2O3: How much do we really understand?, J. Eur. Ceram. Soc. 28 (2008) 1495–1507.
[49] G. Borchardt, K. Gömann, M. Kilo, H. Schmidt, Diffusion in Ceramics, in Ceramics Science and Technology, Vol. 1: Structures (eds R. Riedel and I. -W. Chen), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008, p.105–181.
[50] D. Prot, M. Le Gall, B. Lesage, A. M. Huntz, C. Monty, Self-diffusion in α-Al2O3: IV. Oxygen grain-boundary self-diffusion in undoped and yttria-doped alumina polycrystals, Phil. Mag. A 73 (1996) 935–949.
[51] X. Tang, K.P.D. Lagerlöf, A.H. Heuer, Determination of pipe diffusion coefficients in undoped and magnesia-doped sapphire (a-Al2O3): A study based on annihilation of dislocation dipoles, J. Am. Ceram. Soc. 86 (2003) 560–565.
[52] J.H. Harding, Short-circuit diffusion in ceramics, Interface Science 11 (2003) 81–90.
[53] K.P.D. Lagerlöf, T.E. Mitchell, A.H. Heuer, Lattice diffusion kinetics in undoped and impurity-doped sapphire (a-Al2O3): A dislocation loop annealing study, J. Am. Ceram. Soc. 72 (1989) 2159–2171.
[54] K.P.R. Reddy, A.R. Cooper, Oxygen Diffusion in Sapphire, J. Am. Ceram. Soc. 65 (1982) 634–638.
[55] Y. Oishi, K. Ando, Y. Kubota, Self Diffusion of Oxygen in Single Crystal Alumina, J. Chem. Phys. 73 (1980) 1410–1412.
DOI: 10.1063/1.440201
[56] Y. Oishi, K. Ando, N. Suga, W.D. Kingery, Effect of Surface Condition on Oxygen Self-Diffusion Coefficients for Single Crystal Al2O3, J. Am. Ceram. Soc. 66 (1983) C130–C131.
[57] D.J. Reed, B.J. Wuensch, Ion Probe Measurement of Oxygen Self-Diffusion in Single Crystal Al2O3, J. Am. Ceram. Soc. 63 (1980) 88–92.
[58] D. Prot, C. Monty, Self-diffusion in a-Al2O3: II. Oxygen diffusion in undoped, single crystals, Phil. Mag. A 73 (1996) 899–917.
[59] J.C. Amante, J.D. Cawley, J. Kim, T.R. Lemberger, Oxygen tracer diffusion in SrTiO3 and thin films of YBa2Cu3O7-x on SrTiO3, in T.O. Mason and J.C. Routbort, Point Defects and Related Properties of Ceramics, The American Ceramic Society, Westerville, Ohio, 1991, p.24.
[60] A.H. Heuer, K.P.D. Lagerlöf, Oxygen self-diffusion in corundum (a-Al2O3): A conundrum. Phil. Mag. Lett. 79 (1999) 619–628.
[61] P. Fielitz, G. Borchardt, S. Ganschow, R. Bertram, 26Al tracer diffusion in nominally undoped single crystalline a-Al2O3, Defect and Diffusion Forum 323-325 (2012) 75–79.
[62] P. Fielitz, G. Borchardt, S. Ganschow, R. Bertram, A. Markwitz, 26Al tracer diffusion in titanium doped single crystalline a-Al2O3, Solid State Ionics 179 (2008) 373–379.
[63] S.K. Mohapatra, F.A. Kröger, Defect Structure of a-Al2O3 Doped with Titanium, J. Am. Ceram. Soc. 60 (1977) 381–387.
[64] G.J. Dienes, D.O. Welch, C.R. Fischer, R.D. Hatcher, O. Lazareth, M. Samberg, Shell-model calculation of some point-defect properties in a-Al2O3, Phys. Rev. B 11 (1975) 3060–3070.
[65] P.W.M. Jacobs, E.A. Kotomin, Defect energies for pure corundum and for corundum doped with transition metal ions, Phil. Mag. A 68 (1993) 695–709.
[66] J.D. Cawley, J.W. Halloran, A.R. Cooper, Oxygen Tracer Diffusion in Single-Crystal Alumina, J. Am. Ceram. Soc. 74 (1991) 2086–(2092).
[67] E. -G. Gontier-Moya, F. Moya, J. Bernardini, A new diffusion mechanism for self-compensating impurities in α-alumina. Z. Metallkd. 95 (2004) 888–894.
[68] H. Schneider, K. Okada, J. A. Pask, Mullite and mullite ceramics, John Wiley & Sons, Chichester, 1994, p.199–248.
[69] R.J. Angel, C.T. Prewitt, Crystal structure of mullite: A re-examination of the average structure, Amer. Min. 71 (1986) 1476–1482.
[70] M. Schmücker, H. Schneider, K.J.D. MacKenzie, M.E. Smith, D.L. Carroll, AlO4/SiO4 Distribution in Tetrahedral Double Chains of Mullite, J. Am. Ceram. Soc. 88 (2005) 2935–2937.
[71] H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite – A review, J. Eur. Ceram. Soc. 28 (2008) 329–344.
[72] P. Fielitz, G. Borchardt, M. Schmücker, H. Schneider, M. Wiedenbeck, D. Rhede, S. Weber, S. Scherrer, Secondary Ion Mass Spectroscopy Study of Oxygen-18 Tracer Diffusion in 2/1-Mullite Single Crystals, J. Am. Ceram. Soc. 84 (2001) 2845–2848.
[73] Y. Ikuma, E. Shimada, S. Sakano, M. Oishi, M. Yokoyama, Z. Nakagawa, Oxygen Self-diffusion in Cylindrical Single-Crystal Mullite, J. Electrochem. Soc. 146 (1999) 4672–4675.
DOI: 10.1149/1.1392692
[74] J. Luo, D.P. Almond, R. Stevens, Ionic Mobilities and Association Energies from an Analysis of Electrical Impedance of ZrO2-Y2O3 Alloys, J. Am. Ceram. Soc. 83 (2000) 1703–1708.
[75] J. Claus, G. Borchardt, S. Weber, J. -M. Hiver, S. Scherrer, Combination of EBSP measurements and SIMS to study crystallographic orientation dependence of diffusivities in a polycrystalline material: oxygen tracer diffusion in La2-xSrxCuO4±d, Materials Science and Engineering B38 (1996).
[76] J. Claus, G. Borchardt, Oxygen Diffusion and Surface Exchange Kinetics in YBa2Cu3O6+x, Zeitschrift für Physikalische Chemie 206 (1998) 49–71.
[77] E. Ruiz-Trejo, J.A. Kilner, Oxygen diffusion and proton conduction in La1-xSrxYO3-d, Solid State Ionics 97 (1997) 529–534.
[78] C.R.A. Catlow and W.C. Mackrodt (eds. ), Computer Simulation of Solids, in Lecture Notes in Physics 166, Springer–Verlag, Berlin and Heidelberg, FRG, and New York, (1982).
[79] L. Wondraczek, G. Heide, M. Kilo, N. Nedeljkovic, G. Borchardt, R.A. Jackson, Computer simulation of defect structure in sillimanite and mullites, Phys. Chem. Minerals 29 (2002) 341–345.
[80] O. Gerard and O. Jaoul, Oxygen Diffusion in Olivine, J. Geophys. Res. 94 (1998) 4119–4128.
[81] P.G. Shewmon, Diffusion in Solids, McGraw–Hill Series in Materials Science and Engineering, McGraw–Hill, New York, 1963, p.40–85.
[82] K.P.R. Reddy, Oxygen Diffusion in Close Packed Oxides, Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, (1979).
[83] P. Fielitz, G. Borchardt, H. Schneider, M. Schmücker, M. Wiedenbeck, D. Rhede, Self-diffusion of oxygen in mullite, J. Eur. Ceram. Soc. 21 (2001) 2577–2582.
[84] P. Fielitz, G. Borchardt, M. Schmücker, H. Schneider, A diffusion-controlled mullite formation reaction model based on tracer diffusivity data for aluminium, silicon and oxygen, Phil. Mag. 87 (2007) 111–127.
[85] I.A. Aksay, J.A. Pask, Stable and metastable equilibria in the system SiO2-Al2O3, J. Am. Ceram. Soc. 58 (1975) 507–512.
[86] P. Fielitz, G. Borchardt, P. Mechnich, M. Schmücker, Kinetics of alumina segregation in mullite ceramics, J. Eur. Ceram. Soc. 28 (2008) 401–406.
[87] P. Fielitz, G. Borchardt, Oxygen Grain-Boundary Diffusion in Polycrystalline Mullite Ceramics, J. Am. Ceram. Soc. 87 (2004) 2232–2236.
[88] P. Fielitz, G. Borchardt, M. Schmücker, H. Schneider, Aluminium grain boundary diffusion in polycrystalline mullite ceramics, Phys. Chem. Minerals 34 (2007) 431–436.
[89] Y. -M. Sung, Kinetics analysis of mullite formation reaction at high temperatures, Acta mater. 48 (2000) 2157–2162.
[90] I. Barin, Thermochemical Data of Pure Substances, Parts I+II, VCH, Weinheim, (1989).
[91] M.W. Chase Jr, C.A. Davies, J.R. Downey Jr, et al., JANAF Thermochemical Tables, 3rd edn, ACS/AIP/NBS, New York, (1986).
[92] F. J. Klug, S. Prochazka, R.H. Doremus, Alumina-silica phase diagram in the mullite region, J. Am. Ceram. Soc. 70 (1987) 750–759.
[93] J. Crank, The Mathematics of Diffusion, 2nd Edn., Oxford Univ. Press., (1975).
[94] H. Scholze, Glas: Natur, Struktur und Eigenschaften, Springer, Berlin, Heidelberg, New York, (1988).
[95] H. Jain, C. H. Hsieh, Diffusion in Oxide Glasses, subvol. B1, in: D. L. Beke (Ed. ) Diffusion in Semiconductors and Non-metallic Solids, Landolt-Börnstein Series, Condensed Matter, vol. 33, , Springer, Berlin, 1999, p.1, Chapter 7.
DOI: 10.1007/10542761_14
[96] J. Horbach, W. Kob, K. Binder, Dynamics of Sodium in Sodium Disilicate: Channel Relaxation and Sodium Diffusion, Phys. Rev. Lett. 88 (2002) 125502-1–4.
[97] M.M. Smedskjaer, Q. Zheng, J.C. Mauro, M. Potuzak, S. Mørup, Y. Yue, Sodium diffusion in boroaluminosilicate glasses, J. Non-Cryst. Solids 357 (2011) 3744–3750.
[98] K. Sunder, M. Grofmeier, R. Staskunaite, H. Bracht, Dynamics of Network Formers and Modifiers in Mixed Cation Silicate Glasses, Z. Phys. Chem. 224 (2010) 1677–1705.
[99] D.E. Day, Mixed alkali glasses – Their properties and uses, J. Non-Cryst. Solids 21 (1976) 343–372.
[100] H. Jain, N.L. Peterson, H.L. Downing, Tracer diffusion and electrical conductivity in sodium-cesium silicate glasses, J. Non-Cryst. Solids 55 (1983) 283–300.
[101] J. Kirchhof, S. Unger, B. Knappe, Diffusion coefficients of aluminium and rare earths in vitreous silica, Proc. XIX Int. Congr. Glass, Edinburgh, 1–6 July 2001, Phys. Chem. Glasses 43C (2002) 499–502.
[102] H.J. Windhager, G. Borchardt, Tracerdiffusion und Fehlordnung in dem Orthosilikat Co2SiO4, Ber. Bunsenges. physik. Chem. 79 (1975) 1115–1119.
[103] G. Brébec, R. Seguin, C. Sella, J. Bevenot, J.C. Martin, Diffusion du silicium dans la silice amorphe, Acta Metall. 28 (1980) 327–333.
[104] M. Lepke, P. Fielitz, G. Borchardt, G.H. Frischat, A. Goβ, E. Pösl, Simultaneous aluminium-26 and oxygen-18 transport in an alumosilicate glass, J. Non-Cryst. Solids 356 (2010) 1604–1606.
[105] M. Lepke, P. Fielitz, G. Borchardt, G.H. Frischat, A. Goβ, E. Pösl, Aluminium-26 and oxygen-18 tracer diffusion measurements in an aluminosilicate glass: temperature dependence, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 51 (2010).
[106] M. Lepke, P. Fielitz, G. Borchardt, G.H. Frischat, Oxygen-18, aluminium-26 and silicon-30 self diffusion in aluminosilicate glasses, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 54 (2013) 15–19.
[107] H.A. Schaeffer, Diffusion-controlled processes in glass forming melts, J. Non-Cryst. Solids 67 (1984) 19–33.
[108] M.A. Lamkin, F.L. Riley, R.J. Fordham, Oxygen mobility in silicon dioxide and silicate glasses: a review, J. Eur. Cer. Soc. 10 (1992) 347–367.