p.1
p.31
p.80
p.109
p.129
Li Diffusion in Lithium Containing Metal Oxides Investigated by Tracer Methods
Abstract:
This article presents a review on Li diffusion in lithium containing metal oxide compounds. The focus is on the investigation of solid state diffusion by tracer methods. In contrast to experiments with Nuclear Magnetic Resonance Spectroscopy and Impedance Spectroscopy, only a limited number of tracer based experiments can be found in the literature. Possible reasons are discussed. Measurements on the system Li-Nb-O are given in detail, while additional results on other Li-M-O (M = Al, Si, Mn, Ti) systems are also presented. The review is completed by a brief survey of the experimental methods in use.
Info:
Periodical:
Pages:
109-128
Citation:
Online since:
July 2016
Authors:
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ionics 180 (2009) 911–916.
[2] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura et al., A lithium superionic conductor, Nature materials 10 (2011) 682–686.
DOI: 10.1038/nmat3066
[3] K.E. Aifantis, R.V. Kumar, S.A. Hackney (Eds. ), High energy density lithium batteries: Materials, engineering, applications, Wiley-VCH, Weimheim, (2010).
[4] P.G. Bruce, B. Scrosati, J. -M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angewandte Chemie (International ed. ) 47 (2008) 2930–2946.
[5] M.S. Whittingham, Lithium Batteries and Cathode Materials, Chem. Rev. 104 (2004) 4271–4302.
DOI: 10.1021/cr020731c
[6] J. Chen, Recent Progress in Advanced Materials for Lithium Ion Batteries, Materials 6 (2013) 156–183.
[7] C.M. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative Issues of Cathode Materials for Li-Ion Batteries, Inorganics 2 (2014) 132–154.
[8] T. -F. Yi, S. -Y. Yang, Y. Xie, Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries, J. Mater. Chem. A 3 (2015) 5750–5777.
DOI: 10.1039/c4ta06882c
[9] T. -F. Yi, L. -J. Jiang, J. Shu, C. -B. Yue, R. -S. Zhu, H. -B. Qiao, Recent development and application of Li4Ti5O12 as anode material of lithium ion battery, Journal of Physics and Chemistry of Solids 71 (2010) 1236–1242.
[10] Y. Deng, C. Eames, J. -N. Chotard, F. Lalère, V. Seznec, S. Emge et al., Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes, J. Amer. Chem. Soc. 137 (2015) 9136–9145.
DOI: 10.1021/jacs.5b04444
[11] R.J. Mortimer, D.R. Rosseinsky, P. Monk, Electrochromic Materials and Devices, Wiley, (2015).
[12] J.W. Gerlach, A. Hofmann, T. Höche, F. Frost, B. Rauschenbach, G. Benndorf, High-quality m-plane GaN thin films deposited on γ-LiAlO2 by ion-beam-assisted molecular-beam epitaxy, Appl. Phys. Lett. 88 (2006) 11902.
DOI: 10.1063/1.2159100
[13] J. -P. Jacobs, M.A. San Miguel, L.J. Alvarez, P.B. Giral, Lithium diffusion in γ-LiAlO2, a molecular dynamics simulation, J. Nuclear Mater. 232 (1996) 131–137.
[14] M.C. Gupta, J. Ballato (Eds. ), The handbook of photonics, 2. ed., CRC Press, Boca Raton, Fla., (2007).
[15] T. Volk, M. Wöhlecke, Lithium niobate: Defects, photorefraction and ferroelectric switching, Springer, Berlin, (2008).
[16] P. Heitjans, J. Kärger (Eds. ), Diffusion in Condensed Matter, Springer-Verlag, Berlin/Heidelberg, (2005).
[17] H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer-Verlag GmbH, Berlin Heidelberg, (2007).
[18] J. Backholm, P. Georén, G.A. Niklasson, Determination of solid phase chemical diffusion coefficient and density of states by electrochemical methods: Application to iridium oxide-based thin films, J. Appl. Phys. 103 (2008) 23702.
DOI: 10.1063/1.2831484
[19] W. Weppner, Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li3Sb, J. Electrochem. Soc. 124 (1977) 1569–1578.
DOI: 10.1149/1.2133112
[20] N. Ding, J. Xu, Y.X. Yao, G. Wegner, X. Fang, C.H. Chen et al., Determination of the diffusion coefficient of lithium ions in nano-Si, Solid State Ionics 180 (2009) 222–225.
[21] Z. Xu, J.F. Stebbins, Cation Dynamics and Diffusion in Lithium Orthosilicate: Two-Dimensional Lithium-6 NMR, Science 270 (1995) 1332–1334.
[22] Y. Saito, H. Yamamoto, O. Nakamura, H. Kageyama, H. Ishikawa, T. Miyoshi et al., Determination of ionic self-diffusion coefficients of lithium electrolytes using the pulsed field gradient NMR, J. Power Sources 81–82 (1999) 772–776.
[23] M. Wilkening, From Ultraslow to Fast Lithium Diffusion in the 2D Ion Conductor, Phys. Rev. Lett. 97 (2006) 65901.
[24] P. Heitjans, M. Masoud, A. Feldhoff, M. Wilkening, NMR and impedance studies of nanocrystalline and amorphous ion conductors: Lithium niobate as a model system, Faraday Discuss 134 (2007) 67–82.
DOI: 10.1039/b602887j
[25] M. Wilkening, P. Heitjans, New prospects in studying Li diffusion—two-time stimulated echo NMR of spin-3/2 nuclei, Solid State Ionics 177 (2006) 3031–3036.
[26] H. Schmidt, Simultaneous diffusion of Si and N in silicon nitride, Phys. Rev. B 74 (2006) 45203.
[27] H. Schmidt, G. Borchardt, C. Schmalzried, R. Telle, S. Weber, H. Scherrer, Self-diffusion of boron in TiB2, J. Appl. Phys. 93 (2003) 907.
DOI: 10.1063/1.1530715
[28] R. Kube, H. Bracht, E. Hüger, H. Schmidt, Contributions of vacancies and self-interstitials to self-diffusion in silicon under thermal equilibrium and nonequilibrium conditions, Phys. Rev. B 88 (2013) 85206.
[29] H. Bracht, E. Haller, R. Clark-Phelps, Silicon Self-Diffusion in Isotope Heterostructures, Phys. Rev. Lett. 81 (1998) 393–396.
[30] J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt, Li self-diffusion in lithium niobate single crystals at low temperatures, Phys. Chem. Chem. Phys. 14 (2012) 2427–2433.
DOI: 10.1039/c2cp23548j
[31] J. Crank, The mathematics of diffusion, Oxford university press, (1979).
[32] P. van der Heide, Secondary Ion Mass Spectrometry: An Introduction to Principles and Practices, Wiley, Hoboken, (2014).
[33] W. Möller, M. Hufschmidt, T. Pfeiffer, Diffusion studies by means of nuclear reaction depth profiling, Nuclear Instruments and Methods 149 (1978) 73–76.
[34] M.A. Nastasi, J.W. Mayer, Y. Wang, Ion beam analysis: Fundamentals and applications, CRC Press, S. l., (2014).
[35] S.C. Nagpure, R.G. Downing, B. Bhushan, S.S. Babu, L. Cao, Neutron depth profiling technique for studying aging in Li-ion batteries, Electrochimica Acta 56 (2011) 4735–4743.
[36] H.G. McWhinney, W.D. James, E.A. Schweikert, J.R. Williams, G. Hollenberg, J. Welsh et al., Diffusion of lithium-6 isotopes in lithium aluminate ceramics using neutron depth profiling, J. Nuclear Materials 203 (1993) 43–49.
[37] J. Daillant, A. Gibaud (Eds. ), X-ray and neutron reflectivity: Principles and applications, Springer, Berlin, Heidelberg, (2009).
[38] M. Gupta, Iron self-diffusion in amorphous FeZr/Fe57Zr multilayers measured by neutron reflectometry, Phys. Rev. B 70 (2004) 184206.
[39] J. Speakman, P. Rose, J.A. Hunt, N. Cowlam, R.E. Somekh, A.L. Greer, The study of self-diffusion in crystalline and amorphous multilayer samples by neutron reflectometry, J. Mag. Mag. Mater. 156 (1996) 411–412.
[40] S. Chakravarty, M. Jiang, U. Tietze, D. Lott, T. Geue, J. Stahn et al., Migration and annihilation of non-equilibrium point defects in sputter deposited nanocrystalline alpha-Fe films, Acta Materialia 59 (2011) 5568–5573.
[41] H. Schmidt, M. Gupta, T. Gutberlet, J. Stahn, M. Bruns, How to measure atomic diffusion processes in the sub-nanometer range, Acta Materialia 56 (2008) 464–470.
[42] E. Hüger, H. Schmidt, J. Stahn, B. Braunschweig, U. Geckle, M. Bruns et al., Atomic transport in metastable compounds: Case study of self-diffusion in Si−C−N films using neutron reflectometry, Phys. Rev. B 80 (2009) 220101R.
[43] E. Hüger, U. Tietze, D. Lott, H. Bracht, D. Bougeard, E.E. Haller et al., Self-diffusion in germanium isotope multilayers at low temperatures, Appl. Phys. Lett. 93 (2008) 162104.
DOI: 10.1063/1.3002294
[44] H. Schmidt, Nitrogen Diffusion in Amorphous Silicon Nitride Isotope Multilayers Probed by Neutron Reflectometry, Phys. Rev. Lett. 96 (2006) 55901.
[45] E. Hüger, J. Rahn, J. Stahn, T. Geue, H. Schmidt, Diffusivity determination in bulk materials on nanometric length scales using neutron reflectometry, Phys. Rev. B 85 (2012) 214102.
[46] E. Hüger, J. Rahn, J. Stahn, T. Geue, P. Heitjans, H. Schmidt, Lithium diffusion in congruent LiNbO3 single crystals at low temperatures probed by neutron reflectometry, Phys. Chem. Chem. Phys. 16 (2014) 3670–3674.
DOI: 10.1039/c3cp54939a
[47] L.G. Parratt, Surface Studies of Solids by Total Reflection of X-Rays, Phys. Rev. 95 (1954) 359–369.
[48] K.K. Wong (Ed. ), Properties of lithium niobate, INSPEC/Institution of Electrical Engineers, London, (2002).
[49] F. Luedtke, Hidden Reservoir of Photoactive Electrons in, Phys. Rev. Lett. 109 (2012) 26603.
[50] B. Sturman, Optical cleaning owing to the bulk photovoltaic effect, Phys. Rev. B 80 (2009) 245319.
[51] M. Kösters, B. Sturman, P. Werheit, D. Haertle, K. Buse, Optical cleaning of congruent lithium niobate crystals, Nature Photonics 3 (2009) 510–513.
[52] N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda et al., LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Commun. 9 (2007) 1486–1490.
[53] P. Lerner, C. Legras, J.P. Dumas, Stoechiométrie des monocristaux de métaniobate de lithium, J. Crystal Growth 3-4 (1968) 231–235.
[54] P.F. Bordui, R.G. Norwood, D.H. Jundt, M.M. Fejer, Preparation and characterization of off‐congruent lithium niobate crystals, Journal of Applied Physics 71 (1992) 875–879.
DOI: 10.1063/1.351308
[55] V. Gopalan, V. Dierolf, D.A. Scrymgeour, Defect–Domain Wall Interactions in Trigonal Ferroelectrics, Annu. Rev. Mater. Res. 37 (2007) 449–489.
[56] V. Gopalan, T.E. Mitchell, Y. Furukawa, K. Kitamura, The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals, Appl. Phys. Lett. 72 (1998) (1981).
DOI: 10.1063/1.121491
[57] J. Shi, H. Fritze, G. Borchardt, K. -D. Becker, Defect chemistry, redox kinetics, and chemical diffusion of lithium deficient lithium niobate, Phys. Chem. Chem. Phys. 13 (2011) 6925–6930.
DOI: 10.1039/c0cp02703k
[58] R.M. Araujo, K. Lengyel, R.A. Jackson, L. Kovács, M.E.G. Valerio, A computational study of intrinsic and extrinsic defects in LiNbO3, J. Phys.: Condens. Matter 19 (2007) 46211.
[59] H. Xu, D. Lee, S.B. Sinnott, V. Dierolf, V. Gopalan, S.R. Phillpot, Structure and diffusion of intrinsic defect complexes in LiNbO3 from density functional theory calculations, J. Phys.: Condens. Matter 22 (2010) 135002.
[60] A. Yariv, S.S. Orlov, G.A. Rakuljic, Holographic storage dynamics in lithium niobate: theory and experiment, J. Opt. Soc. Am. B 13 (1996) 2513–2523.
[61] K. Buse, Origin of thermal fixing in photorefractive lithium niobate crystals, Phys. Rev. B 56 (1997) 1225–1235.
[62] L. Arizmendi, V. de Andrés, E.M. de Miguel-Sanz, M. Carrascosa, Determination of proton diffusion anisotropy by thermal decay of fixed holograms with K-vector perpendicular to the c-axis in LiNbO3: Fe, Appl. Phys. B 80 (2005) 351–354.
[63] D.L. Staebler, J.J. Amodei, Thermally fixed holograms in LiNbO3, Ferroelectrics 3 (1972) 107–113.
[64] J. Jackel, A.M. Glass, G.E. Peterson, C.E. Rice, D.H. Olson, J.J. Veselka, Damage-resistant LiNbO3 waveguides, J. Appl. Phys. 55 (1984) 269–270.
DOI: 10.1063/1.332883
[65] M. Falk, T. Woike, K. Buse, Charge compensation mechanism for thermo-electric oxidization of lithium niobate crystals, J. Appl. Phys. 102 (2007) 63529.
DOI: 10.1063/1.2784024
[66] F. Lüdtke, N. Waasem, K. Buse, B. Sturman, Light-induced charge-transport in undoped LiNbO3 crystals: Applied Physics B, Appl. Phys. B 105 (2011) 35–50.
[67] M. Falk, K. Buse, Thermo-electric method for nearly complete oxidization of highly iron-doped lithium niobate crystals, Appl. Phys. B 81 (2005) 853–855.
[68] S.T. Vohra, A.R. Mickelson, S.E. Asher, Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides, J. Appl. Phys. 66 (1989) 5161–5174.
DOI: 10.1063/1.343751
[69] C. Canali, A. Carnera, G. Della Mea, P. Mazzoldi, S.M. Al Shukri, A.C.G. Nutt et al., Structural characterization of proton exchanged LiNbO3 optical waveguides, J. Appl. Phys. 59 (1986) 2643–2649.
DOI: 10.1063/1.336968
[70] A. Alcázar, J. Rams, J.M. Cabrera, F. Agulló-López, Proton exchange of quasistoichiometric LiNbO3, J. Appl. Phys. 82 (1997) 4752–4755.
DOI: 10.1063/1.366331
[71] H. Steigerwald, F. von Cube, F. Luedtke, V. Dierolf, K. Buse, Influence of heat and UV light on the coercive field of lithium niobate crystals, Appl. Phys. B 101 (2010) 535–539.
[72] H. Steigerwald, Origin of UV-induced poling inhibition in lithium niobate crystals, Phys. Rev. B 82 (2010) 214105.
[73] V. Gopalan, M.C. Gupta, Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals, J. Appl. Phys. 80 (1996) 6099–6106.
DOI: 10.1063/1.363684
[74] H. Xu, D. Lee, J. He, S.B. Sinnott, V. Gopalan, V. Dierolf et al., Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations, Phys. Rev. B 78 (2008) 174103.
[75] D.P. Birnie, Analysis of diffusion in lithium niobate, J. Mater. Sci. 28 (1993) 302–315.
[76] M. Wilkening, D. Bork, S. Indris, P. Heitjans, Diffusion in amorphous LiNbO3 studied by 7Li NMR — comparison with the nano- and microcrystalline material, Phys. Chem. Chem. Phys. 4 (2002) 3246–3251.
DOI: 10.1039/b201193j
[77] T.K. Halstead, Temperature Dependence of the Li NMR Spectrum and Atomic Motion in LiNbO3, J. Chem. Phys. 53 (1970) 3427–3435.
[78] A. Mehta, E.K. Chang, D.M. Smyth, Ionic transport in LiNbO3, J. Mater. Res. 6 (1991) 851–854.
[79] D. Bork, P. Heitjans, NMR Investigations on Ion Dynamics and Structure in Nanocrystalline and Polycrystalline LiNbO3, J. Phys. Chem. B 105 (2001) 9162–9170.
DOI: 10.1021/jp012409w
[80] G. Bergmann, The electrical conductivity of LiNbO3, Solid State Commun. 6 (1968) 77–79.
[81] M. Masoud, P. Heitjans, Impedance Spectroscopy Analysis of Li Ion Dynamics in Single Crystal, Microcrystalline, Nanocrystalline, and Amorphous LiNbO3, Defect Diffus. Forum 237-240 (2005) 1016–1022.
[82] A.V. Yatsenko, S.V. Yevdokimov, A.S. Pritulenko, D.Y. Sugak, I.M. Solskii, Electrical properties of LiNbO3 crystals reduced in a hydrogen atmosphere, Phys. Solid State 54 (2012) 2231–2235.
[83] B. Ruprecht, J. Rahn, H. Schmidt, P. Heitjans, Low-Temperature DC Conductivity of LiNbO3 Single Crystals, Z. Phys. Chemie 226 (2012) 431–437.
[84] J. Rahn, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt, Li Diffusion in (110) Oriented LiNbO3 Single Crystals, Defect Diffus. Forum 333 (2013) 33–38.
[85] W. Bollmann, M. Gernand, On the disorder of LiNbO3 crystals, Phys. Stat. Sol. A 9 (1972) 301–308.
[86] K. Brands, M. Falk, D. Haertle, T. Woike, K. Buse, Impedance spectroscopy of iron-doped lithium niobate crystals, Appl. Phys. B 91 (2008) 279–281.
[87] A. Weidenfelder, J. Shi, P. Fielitz, G. Borchardt, K.D. Becker, H. Fritze, Electrical and electromechanical properties of stoichiometric lithium niobate at high-temperatures, Solid State Ionics 225 (2012) 26–29.
[88] J. Rahn, P. Heitjans, H. Schmidt, Li Self-Diffusivities in Lithium Niobate Single Crystals as a Function of Li 2 O Content, J. Phys. Chem. C 119 (2015) 15557–15561.
[89] J. Rahn, B. Ruprecht, P. Heitjans, H. Schmidt, Lithium Diffusion in Li-Rich and Li-Poor Amorphous Lithium Niobate, Defect Diffus. Forum 363 (2015) 62–67.
[90] J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt, Self-Diffusion of Lithium in Amorphous Lithium Niobate Layers, Z. Phys. Chemie 226 (2012) 439–448.
[91] S. Indris, P. Heitjans, R. Uecker, T. Bredow, Local electronic structure in a LiAlO single crystal studied with Li7 NMR spectroscopy and comparison with quantum chemical calculations, Phys. Rev. B 74 (2006) 245120.
[92] S. Indris, P. Heitjans, R. Uecker, B. Roling, Li Ion Dynamics in a LiAlO2 Single Crystal Studied by 7 Li NMR Spectroscopy and Conductivity Measurements, J. Phys. Chem. C 116 (2012) 14243–14247.
DOI: 10.1021/jp3042928
[93] Y.J. Sun, O. Brandt, K.H. Ploog, Growth of M-plane GaN films on γ-LiAlO2 (100) with high phase purity, J. Vac. Sci. Technol. B 21 (2003) 1350–1353.
DOI: 10.1116/1.1585068
[94] L. Wang, E. Richter, M. Weyers, Red luminescence from freestanding GaN grown on LiAlO2 substrate by hydride vapor phase epitaxy, Phys. Stat. Sol. A 204 (2007) 846–849.
[95] P. Waltereit, O. Brandt, M. Ramsteiner, A. Trampert, H. Grahn, J. Menniger et al., M-plane GaN grown on γ-LiAlO2 (100): Nitride semiconductors free of internal electrostatic fields, Journal of Crystal Growth 227-228 (2001) 437–441.
[96] X. Ke, X. Jun, D. Peizhen, Z. Yongzong, Z. Guoqing, Q. Rongsheng et al., γ-LiAlO2 single crystal: A novel substrate for GaN epitaxy, Journal of Crystal Growth 193 (1998) 127–132.
[97] J. Lin, Z. Wen, X. Xu, N. Li, S. Song, Characterization and improvement of water compatibility of γ-LiAlO2 ceramic breeders, Fusion Engineering and Design 85 (2010) 1162–1166.
[98] N. Roux, C. Johnson, K. Noda, Properties and performance of tritium breeding ceramics, J. Nuclear Materials 191-194 (1992) 15–22.
[99] S. Terada, I. Nagashima, K. Higaki, Y. Ito, Stability of LiAlO2 as electrolyte matrix for molten carbonate fuel cells, J. Power Sources 75 (1998) 223–229.
[100] I. Villarreal, E. Morales, J.L. Acosta, Ionic conductivity and spectroscopic characterisation of γ-LiAlO2-filled polymer electrolytes, Angew. Makromol. Chem. 266 (1999) 24–29.
DOI: 10.1002/(sici)1522-9505(19990501)266:1<24::aid-apmc24>3.0.co;2-i
[101] Lakshman Dissanayake, M. A. K., Nano-composite solid polymer electrolytes for solid state ionic devices: Ionics, Ionics 10 (2004) 221–225.
DOI: 10.1007/bf02382820
[102] S.D. Kim, S.H. Hyun, M.Y. Shin, T.H. Lim, S.A. Hong, H.C. Lim, Phase and microstructure stabilities of LiAlO2 in molten Li/Na carbonate for molten carbonate fuel cells, J. Power Sources 143 (2005) 24–29.
[103] H. Cao, B. Xia, Y. Zhang, N. Xu, LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries, Solid State Ionics 176 (2005) 911–914.
[104] L. Lei, D. He, Y. Zou, W. Zhang, Z. Wang, M. Jiang et al., Phase transitions of LiAlO2 at high pressure and high temperature, J. Solid State Chem. 181 (2008) 1810–1815.
[105] M. Marezio, The crystal structure and anomalous dispersion of γ-LiAlO2, Acta Crystallogr. 19 (1965) 396–400.
[106] E. Witt, S. Nakhal, C.V. Chandran, M. Lerch, P. Heitjans, NMR and Impedance Spectroscopy Studies on Lithium Ion Diffusion in Microcrystalline γ-LiAlO2, Z. Phys. Chemie 229 (2015) 1327–1339.
[107] D. Wohlmuth, V. Epp, P. Bottke, I. Hanzu, B. Bitschnau, I. Letofsky-Papst et al., Order vs. disorder—a huge increase in ionic conductivity of nanocrystalline LiAlO2 embedded in an amorphous-like matrix of lithium aluminate, J. Mater. Chem. A 2 (2014).
DOI: 10.1039/c4ta02923b
[108] T. Matsuo, H. Ohno, K. Noda, S. Komishi, H. Yoshida, H. Watanabe, Nuclear magnetic resonance investigations of lithium diffusion in Li2O, Li2SiO3 and LiAlO2, J. Chem. Soc., Faraday Trans. 2 79 (1983) 1205–1216.
DOI: 10.1039/f29837901205
[109] S. Konishi, H. Ohno, Electrical Conductivity of Polycrystalline Li2SiO3 and γ-LiAlO2, J. Amer. Ceram. Soc. 67 (1984) 418–419.
[110] J. Langer, D. Wohlmuth, A. Kovalcik, V. Epp, F. Stelzer, M. Wilkening, Mechanical detection of ultraslow, Debye-like Li-ion motions in LiAlO2 single crystals, Annalen der Physik 527 (2015) 523–530.
[111] J. Rahn, E. Witt, P. Heitjans, H. Schmidt, Lithium Diffusion in Ion-Beam Sputtered Amorphous LiAlO2, Z. Phys. Chemie 229 (2015) 1341–1350.
[112] H. Ishiyama, S. -C. Jeong, Y. Watanabe, Y. Hirayama, N. Imai, H. Miyatake et al., Nanoscale diffusion tracing by radioactive 8Li tracer, Jpn. J. Appl. Phys. 53 (2014) 110303.
[113] S. -C. Jeong, I. Katayama, H. Kawakami, Y. Watanabe, H. Ishiyama, N. Imai et al., On-Line Diffusion Tracing in Li Ionic Conductors by the Short-Lived Radioactive Beam of 8Li, Jpn. J. Appl. Phys. 47 (2008) 6413–6415.
DOI: 10.1143/jjap.47.6413
[114] M. Kamata, Application of Neutron Radiography to Visualize the Motion of Lithium Ions in Lithium-Ion Conducting Materials, J. Electrochem. Soc. 143 (1996) 1866–1870.
DOI: 10.1149/1.1836916
[115] M. Kamata, Erratum: Application of Neutron Radiography to Visualize the Motion of Lithium Ions in Lithium-Ion Conducting Materials, [J. Electrochem. Soc., 143, 1866 (1996)], J. Electrochem. Soc. 143 (1996) 2702.
DOI: 10.1149/1.1837077
[116] S. Takai, Diffusion coefficient measurement of lithium ion in sintered Li1. 33Ti1. 67O4 by means of neutron radiography, Solid State Ionics 123 (1999) 165–172.
[117] S. Takai, K. Yoshioka, H. Iikura, M. Matsubayashi, T. Yao, T. Esaka, Tracer diffusion coefficients of lithium ion in LiMn2O4 measured by neutron radiography, Solid State Ionics 256 (2014) 93–96.
[118] Verhoeven, V. W. J., I. M. de Schepper, G. Nachtegaal, A. P. M. Kentgens, E. M. Kelder, J. Schoonman, F. M. Mulder, Lithium Dynamics in LiMn2O4 Probed Directly by Two-Dimensional 7Li NMR, Phys. Rev. Lett. 86 (2001) 4314–4317.
[119] T. Okumura, T. Fukutsuka, Y. Uchimoto, N. Sakai, K. Yamaji, H. Yokokawa, Determination of lithium ion diffusion in lithium–manganese-oxide-spinel thin films by secondary-ion mass spectrometry, J. Power Sources 189 (2009) 643–645.
[120] Du Yongjuan, G.H. Frischat, W. Beier, A mass spectrometer method for the investigation of Li self-diffusion in mixed alkali glasses, J. Non-Crystalline Solids 112 (1989) 399–403.
[121] Y. Oishi, Y. Kamei, M. Akiyama, T. Yanagi, Self-diffusion coefficient of lithium in lithium oxide, J. Nuclear Materials 87 (1979) 341–344.
[122] V. B. Ptashnik, T. Y. Dunaeva, I. V. Myasnikov, Self-diffusion of lithium ions in a lithium-niobate single–crystal, Inorg. Mater. 21 (1985) 1814-1817.