Li Diffusion in Lithium Containing Metal Oxides Investigated by Tracer Methods

Article Preview

Abstract:

This article presents a review on Li diffusion in lithium containing metal oxide compounds. The focus is on the investigation of solid state diffusion by tracer methods. In contrast to experiments with Nuclear Magnetic Resonance Spectroscopy and Impedance Spectroscopy, only a limited number of tracer based experiments can be found in the literature. Possible reasons are discussed. Measurements on the system Li-Nb-O are given in detail, while additional results on other Li-M-O (M = Al, Si, Mn, Ti) systems are also presented. The review is completed by a brief survey of the experimental methods in use.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-128

Citation:

Online since:

July 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ionics 180 (2009) 911–916.

DOI: 10.1016/j.ssi.2009.03.022

Google Scholar

[2] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura et al., A lithium superionic conductor, Nature materials 10 (2011) 682–686.

DOI: 10.1038/nmat3066

Google Scholar

[3] K.E. Aifantis, R.V. Kumar, S.A. Hackney (Eds. ), High energy density lithium batteries: Materials, engineering, applications, Wiley-VCH, Weimheim, (2010).

DOI: 10.1002/9783527630011

Google Scholar

[4] P.G. Bruce, B. Scrosati, J. -M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angewandte Chemie (International ed. ) 47 (2008) 2930–2946.

DOI: 10.1002/anie.200702505

Google Scholar

[5] M.S. Whittingham, Lithium Batteries and Cathode Materials, Chem. Rev. 104 (2004) 4271–4302.

DOI: 10.1021/cr020731c

Google Scholar

[6] J. Chen, Recent Progress in Advanced Materials for Lithium Ion Batteries, Materials 6 (2013) 156–183.

Google Scholar

[7] C.M. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative Issues of Cathode Materials for Li-Ion Batteries, Inorganics 2 (2014) 132–154.

DOI: 10.3390/inorganics2010132

Google Scholar

[8] T. -F. Yi, S. -Y. Yang, Y. Xie, Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries, J. Mater. Chem. A 3 (2015) 5750–5777.

DOI: 10.1039/c4ta06882c

Google Scholar

[9] T. -F. Yi, L. -J. Jiang, J. Shu, C. -B. Yue, R. -S. Zhu, H. -B. Qiao, Recent development and application of Li4Ti5O12 as anode material of lithium ion battery, Journal of Physics and Chemistry of Solids 71 (2010) 1236–1242.

DOI: 10.1016/j.jpcs.2010.05.001

Google Scholar

[10] Y. Deng, C. Eames, J. -N. Chotard, F. Lalère, V. Seznec, S. Emge et al., Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes, J. Amer. Chem. Soc. 137 (2015) 9136–9145.

DOI: 10.1021/jacs.5b04444

Google Scholar

[11] R.J. Mortimer, D.R. Rosseinsky, P. Monk, Electrochromic Materials and Devices, Wiley, (2015).

Google Scholar

[12] J.W. Gerlach, A. Hofmann, T. Höche, F. Frost, B. Rauschenbach, G. Benndorf, High-quality m-plane GaN thin films deposited on γ-LiAlO2 by ion-beam-assisted molecular-beam epitaxy, Appl. Phys. Lett. 88 (2006) 11902.

DOI: 10.1063/1.2159100

Google Scholar

[13] J. -P. Jacobs, M.A. San Miguel, L.J. Alvarez, P.B. Giral, Lithium diffusion in γ-LiAlO2, a molecular dynamics simulation, J. Nuclear Mater. 232 (1996) 131–137.

DOI: 10.1016/s0022-3115(96)00435-7

Google Scholar

[14] M.C. Gupta, J. Ballato (Eds. ), The handbook of photonics, 2. ed., CRC Press, Boca Raton, Fla., (2007).

Google Scholar

[15] T. Volk, M. Wöhlecke, Lithium niobate: Defects, photorefraction and ferroelectric switching, Springer, Berlin, (2008).

DOI: 10.1007/978-3-540-70766-0

Google Scholar

[16] P. Heitjans, J. Kärger (Eds. ), Diffusion in Condensed Matter, Springer-Verlag, Berlin/Heidelberg, (2005).

Google Scholar

[17] H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer-Verlag GmbH, Berlin Heidelberg, (2007).

Google Scholar

[18] J. Backholm, P. Georén, G.A. Niklasson, Determination of solid phase chemical diffusion coefficient and density of states by electrochemical methods: Application to iridium oxide-based thin films, J. Appl. Phys. 103 (2008) 23702.

DOI: 10.1063/1.2831484

Google Scholar

[19] W. Weppner, Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li3Sb, J. Electrochem. Soc. 124 (1977) 1569–1578.

DOI: 10.1149/1.2133112

Google Scholar

[20] N. Ding, J. Xu, Y.X. Yao, G. Wegner, X. Fang, C.H. Chen et al., Determination of the diffusion coefficient of lithium ions in nano-Si, Solid State Ionics 180 (2009) 222–225.

DOI: 10.1016/j.ssi.2008.12.015

Google Scholar

[21] Z. Xu, J.F. Stebbins, Cation Dynamics and Diffusion in Lithium Orthosilicate: Two-Dimensional Lithium-6 NMR, Science 270 (1995) 1332–1334.

DOI: 10.1126/science.270.5240.1332

Google Scholar

[22] Y. Saito, H. Yamamoto, O. Nakamura, H. Kageyama, H. Ishikawa, T. Miyoshi et al., Determination of ionic self-diffusion coefficients of lithium electrolytes using the pulsed field gradient NMR, J. Power Sources 81–82 (1999) 772–776.

DOI: 10.1016/s0378-7753(99)00101-9

Google Scholar

[23] M. Wilkening, From Ultraslow to Fast Lithium Diffusion in the 2D Ion Conductor, Phys. Rev. Lett. 97 (2006) 65901.

Google Scholar

[24] P. Heitjans, M. Masoud, A. Feldhoff, M. Wilkening, NMR and impedance studies of nanocrystalline and amorphous ion conductors: Lithium niobate as a model system, Faraday Discuss 134 (2007) 67–82.

DOI: 10.1039/b602887j

Google Scholar

[25] M. Wilkening, P. Heitjans, New prospects in studying Li diffusion—two-time stimulated echo NMR of spin-3/2 nuclei, Solid State Ionics 177 (2006) 3031–3036.

DOI: 10.1016/j.ssi.2006.07.037

Google Scholar

[26] H. Schmidt, Simultaneous diffusion of Si and N in silicon nitride, Phys. Rev. B 74 (2006) 45203.

Google Scholar

[27] H. Schmidt, G. Borchardt, C. Schmalzried, R. Telle, S. Weber, H. Scherrer, Self-diffusion of boron in TiB2, J. Appl. Phys. 93 (2003) 907.

DOI: 10.1063/1.1530715

Google Scholar

[28] R. Kube, H. Bracht, E. Hüger, H. Schmidt, Contributions of vacancies and self-interstitials to self-diffusion in silicon under thermal equilibrium and nonequilibrium conditions, Phys. Rev. B 88 (2013) 85206.

DOI: 10.1103/physrevb.88.085206

Google Scholar

[29] H. Bracht, E. Haller, R. Clark-Phelps, Silicon Self-Diffusion in Isotope Heterostructures, Phys. Rev. Lett. 81 (1998) 393–396.

DOI: 10.1103/physrevlett.81.393

Google Scholar

[30] J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt, Li self-diffusion in lithium niobate single crystals at low temperatures, Phys. Chem. Chem. Phys. 14 (2012) 2427–2433.

DOI: 10.1039/c2cp23548j

Google Scholar

[31] J. Crank, The mathematics of diffusion, Oxford university press, (1979).

Google Scholar

[32] P. van der Heide, Secondary Ion Mass Spectrometry: An Introduction to Principles and Practices, Wiley, Hoboken, (2014).

Google Scholar

[33] W. Möller, M. Hufschmidt, T. Pfeiffer, Diffusion studies by means of nuclear reaction depth profiling, Nuclear Instruments and Methods 149 (1978) 73–76.

DOI: 10.1016/0029-554x(78)90841-8

Google Scholar

[34] M.A. Nastasi, J.W. Mayer, Y. Wang, Ion beam analysis: Fundamentals and applications, CRC Press, S. l., (2014).

Google Scholar

[35] S.C. Nagpure, R.G. Downing, B. Bhushan, S.S. Babu, L. Cao, Neutron depth profiling technique for studying aging in Li-ion batteries, Electrochimica Acta 56 (2011) 4735–4743.

DOI: 10.1016/j.electacta.2011.02.037

Google Scholar

[36] H.G. McWhinney, W.D. James, E.A. Schweikert, J.R. Williams, G. Hollenberg, J. Welsh et al., Diffusion of lithium-6 isotopes in lithium aluminate ceramics using neutron depth profiling, J. Nuclear Materials 203 (1993) 43–49.

DOI: 10.1016/0022-3115(93)90428-2

Google Scholar

[37] J. Daillant, A. Gibaud (Eds. ), X-ray and neutron reflectivity: Principles and applications, Springer, Berlin, Heidelberg, (2009).

Google Scholar

[38] M. Gupta, Iron self-diffusion in amorphous FeZr/Fe57Zr multilayers measured by neutron reflectometry, Phys. Rev. B 70 (2004) 184206.

Google Scholar

[39] J. Speakman, P. Rose, J.A. Hunt, N. Cowlam, R.E. Somekh, A.L. Greer, The study of self-diffusion in crystalline and amorphous multilayer samples by neutron reflectometry, J. Mag. Mag. Mater. 156 (1996) 411–412.

DOI: 10.1016/0304-8853(95)00918-3

Google Scholar

[40] S. Chakravarty, M. Jiang, U. Tietze, D. Lott, T. Geue, J. Stahn et al., Migration and annihilation of non-equilibrium point defects in sputter deposited nanocrystalline alpha-Fe films, Acta Materialia 59 (2011) 5568–5573.

DOI: 10.1016/j.actamat.2011.05.029

Google Scholar

[41] H. Schmidt, M. Gupta, T. Gutberlet, J. Stahn, M. Bruns, How to measure atomic diffusion processes in the sub-nanometer range, Acta Materialia 56 (2008) 464–470.

DOI: 10.1016/j.actamat.2007.10.005

Google Scholar

[42] E. Hüger, H. Schmidt, J. Stahn, B. Braunschweig, U. Geckle, M. Bruns et al., Atomic transport in metastable compounds: Case study of self-diffusion in Si−C−N films using neutron reflectometry, Phys. Rev. B 80 (2009) 220101R.

DOI: 10.1103/physrevb.80.220101

Google Scholar

[43] E. Hüger, U. Tietze, D. Lott, H. Bracht, D. Bougeard, E.E. Haller et al., Self-diffusion in germanium isotope multilayers at low temperatures, Appl. Phys. Lett. 93 (2008) 162104.

DOI: 10.1063/1.3002294

Google Scholar

[44] H. Schmidt, Nitrogen Diffusion in Amorphous Silicon Nitride Isotope Multilayers Probed by Neutron Reflectometry, Phys. Rev. Lett. 96 (2006) 55901.

DOI: 10.1103/physrevlett.96.055901

Google Scholar

[45] E. Hüger, J. Rahn, J. Stahn, T. Geue, H. Schmidt, Diffusivity determination in bulk materials on nanometric length scales using neutron reflectometry, Phys. Rev. B 85 (2012) 214102.

DOI: 10.1103/physrevb.85.214102

Google Scholar

[46] E. Hüger, J. Rahn, J. Stahn, T. Geue, P. Heitjans, H. Schmidt, Lithium diffusion in congruent LiNbO3 single crystals at low temperatures probed by neutron reflectometry, Phys. Chem. Chem. Phys. 16 (2014) 3670–3674.

DOI: 10.1039/c3cp54939a

Google Scholar

[47] L.G. Parratt, Surface Studies of Solids by Total Reflection of X-Rays, Phys. Rev. 95 (1954) 359–369.

DOI: 10.1103/physrev.95.359

Google Scholar

[48] K.K. Wong (Ed. ), Properties of lithium niobate, INSPEC/Institution of Electrical Engineers, London, (2002).

Google Scholar

[49] F. Luedtke, Hidden Reservoir of Photoactive Electrons in, Phys. Rev. Lett. 109 (2012) 26603.

Google Scholar

[50] B. Sturman, Optical cleaning owing to the bulk photovoltaic effect, Phys. Rev. B 80 (2009) 245319.

Google Scholar

[51] M. Kösters, B. Sturman, P. Werheit, D. Haertle, K. Buse, Optical cleaning of congruent lithium niobate crystals, Nature Photonics 3 (2009) 510–513.

DOI: 10.1038/nphoton.2009.142

Google Scholar

[52] N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda et al., LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Commun. 9 (2007) 1486–1490.

DOI: 10.1016/j.elecom.2007.02.008

Google Scholar

[53] P. Lerner, C. Legras, J.P. Dumas, Stoechiométrie des monocristaux de métaniobate de lithium, J. Crystal Growth 3-4 (1968) 231–235.

DOI: 10.1016/0022-0248(68)90139-5

Google Scholar

[54] P.F. Bordui, R.G. Norwood, D.H. Jundt, M.M. Fejer, Preparation and characterization of off‐congruent lithium niobate crystals, Journal of Applied Physics 71 (1992) 875–879.

DOI: 10.1063/1.351308

Google Scholar

[55] V. Gopalan, V. Dierolf, D.A. Scrymgeour, Defect–Domain Wall Interactions in Trigonal Ferroelectrics, Annu. Rev. Mater. Res. 37 (2007) 449–489.

DOI: 10.1146/annurev.matsci.37.052506.084247

Google Scholar

[56] V. Gopalan, T.E. Mitchell, Y. Furukawa, K. Kitamura, The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals, Appl. Phys. Lett. 72 (1998) (1981).

DOI: 10.1063/1.121491

Google Scholar

[57] J. Shi, H. Fritze, G. Borchardt, K. -D. Becker, Defect chemistry, redox kinetics, and chemical diffusion of lithium deficient lithium niobate, Phys. Chem. Chem. Phys. 13 (2011) 6925–6930.

DOI: 10.1039/c0cp02703k

Google Scholar

[58] R.M. Araujo, K. Lengyel, R.A. Jackson, L. Kovács, M.E.G. Valerio, A computational study of intrinsic and extrinsic defects in LiNbO3, J. Phys.: Condens. Matter 19 (2007) 46211.

DOI: 10.1088/0953-8984/19/4/046211

Google Scholar

[59] H. Xu, D. Lee, S.B. Sinnott, V. Dierolf, V. Gopalan, S.R. Phillpot, Structure and diffusion of intrinsic defect complexes in LiNbO3 from density functional theory calculations, J. Phys.: Condens. Matter 22 (2010) 135002.

DOI: 10.1088/0953-8984/22/13/135002

Google Scholar

[60] A. Yariv, S.S. Orlov, G.A. Rakuljic, Holographic storage dynamics in lithium niobate: theory and experiment, J. Opt. Soc. Am. B 13 (1996) 2513–2523.

DOI: 10.1364/josab.13.002513

Google Scholar

[61] K. Buse, Origin of thermal fixing in photorefractive lithium niobate crystals, Phys. Rev. B 56 (1997) 1225–1235.

DOI: 10.1103/physrevb.56.1225

Google Scholar

[62] L. Arizmendi, V. de Andrés, E.M. de Miguel-Sanz, M. Carrascosa, Determination of proton diffusion anisotropy by thermal decay of fixed holograms with K-vector perpendicular to the c-axis in LiNbO3: Fe, Appl. Phys. B 80 (2005) 351–354.

DOI: 10.1007/s00340-005-1729-1

Google Scholar

[63] D.L. Staebler, J.J. Amodei, Thermally fixed holograms in LiNbO3, Ferroelectrics 3 (1972) 107–113.

DOI: 10.1080/00150197208235297

Google Scholar

[64] J. Jackel, A.M. Glass, G.E. Peterson, C.E. Rice, D.H. Olson, J.J. Veselka, Damage-resistant LiNbO3 waveguides, J. Appl. Phys. 55 (1984) 269–270.

DOI: 10.1063/1.332883

Google Scholar

[65] M. Falk, T. Woike, K. Buse, Charge compensation mechanism for thermo-electric oxidization of lithium niobate crystals, J. Appl. Phys. 102 (2007) 63529.

DOI: 10.1063/1.2784024

Google Scholar

[66] F. Lüdtke, N. Waasem, K. Buse, B. Sturman, Light-induced charge-transport in undoped LiNbO3 crystals: Applied Physics B, Appl. Phys. B 105 (2011) 35–50.

DOI: 10.1007/s00340-011-4615-z

Google Scholar

[67] M. Falk, K. Buse, Thermo-electric method for nearly complete oxidization of highly iron-doped lithium niobate crystals, Appl. Phys. B 81 (2005) 853–855.

DOI: 10.1007/s00340-005-1972-5

Google Scholar

[68] S.T. Vohra, A.R. Mickelson, S.E. Asher, Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides, J. Appl. Phys. 66 (1989) 5161–5174.

DOI: 10.1063/1.343751

Google Scholar

[69] C. Canali, A. Carnera, G. Della Mea, P. Mazzoldi, S.M. Al Shukri, A.C.G. Nutt et al., Structural characterization of proton exchanged LiNbO3 optical waveguides, J. Appl. Phys. 59 (1986) 2643–2649.

DOI: 10.1063/1.336968

Google Scholar

[70] A. Alcázar, J. Rams, J.M. Cabrera, F. Agulló-López, Proton exchange of quasistoichiometric LiNbO3, J. Appl. Phys. 82 (1997) 4752–4755.

DOI: 10.1063/1.366331

Google Scholar

[71] H. Steigerwald, F. von Cube, F. Luedtke, V. Dierolf, K. Buse, Influence of heat and UV light on the coercive field of lithium niobate crystals, Appl. Phys. B 101 (2010) 535–539.

DOI: 10.1007/s00340-010-4209-1

Google Scholar

[72] H. Steigerwald, Origin of UV-induced poling inhibition in lithium niobate crystals, Phys. Rev. B 82 (2010) 214105.

Google Scholar

[73] V. Gopalan, M.C. Gupta, Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals, J. Appl. Phys. 80 (1996) 6099–6106.

DOI: 10.1063/1.363684

Google Scholar

[74] H. Xu, D. Lee, J. He, S.B. Sinnott, V. Gopalan, V. Dierolf et al., Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations, Phys. Rev. B 78 (2008) 174103.

DOI: 10.1103/physrevb.78.174103

Google Scholar

[75] D.P. Birnie, Analysis of diffusion in lithium niobate, J. Mater. Sci. 28 (1993) 302–315.

Google Scholar

[76] M. Wilkening, D. Bork, S. Indris, P. Heitjans, Diffusion in amorphous LiNbO3 studied by 7Li NMR — comparison with the nano- and microcrystalline material, Phys. Chem. Chem. Phys. 4 (2002) 3246–3251.

DOI: 10.1039/b201193j

Google Scholar

[77] T.K. Halstead, Temperature Dependence of the Li NMR Spectrum and Atomic Motion in LiNbO3, J. Chem. Phys. 53 (1970) 3427–3435.

Google Scholar

[78] A. Mehta, E.K. Chang, D.M. Smyth, Ionic transport in LiNbO3, J. Mater. Res. 6 (1991) 851–854.

Google Scholar

[79] D. Bork, P. Heitjans, NMR Investigations on Ion Dynamics and Structure in Nanocrystalline and Polycrystalline LiNbO3, J. Phys. Chem. B 105 (2001) 9162–9170.

DOI: 10.1021/jp012409w

Google Scholar

[80] G. Bergmann, The electrical conductivity of LiNbO3, Solid State Commun. 6 (1968) 77–79.

Google Scholar

[81] M. Masoud, P. Heitjans, Impedance Spectroscopy Analysis of Li Ion Dynamics in Single Crystal, Microcrystalline, Nanocrystalline, and Amorphous LiNbO3, Defect Diffus. Forum 237-240 (2005) 1016–1022.

DOI: 10.4028/www.scientific.net/ddf.237-240.1016

Google Scholar

[82] A.V. Yatsenko, S.V. Yevdokimov, A.S. Pritulenko, D.Y. Sugak, I.M. Solskii, Electrical properties of LiNbO3 crystals reduced in a hydrogen atmosphere, Phys. Solid State 54 (2012) 2231–2235.

DOI: 10.1134/s1063783412110339

Google Scholar

[83] B. Ruprecht, J. Rahn, H. Schmidt, P. Heitjans, Low-Temperature DC Conductivity of LiNbO3 Single Crystals, Z. Phys. Chemie 226 (2012) 431–437.

DOI: 10.1524/zpch.2012.0226

Google Scholar

[84] J. Rahn, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt, Li Diffusion in (110) Oriented LiNbO3 Single Crystals, Defect Diffus. Forum 333 (2013) 33–38.

DOI: 10.4028/www.scientific.net/ddf.333.33

Google Scholar

[85] W. Bollmann, M. Gernand, On the disorder of LiNbO3 crystals, Phys. Stat. Sol. A 9 (1972) 301–308.

DOI: 10.1002/pssa.2210090136

Google Scholar

[86] K. Brands, M. Falk, D. Haertle, T. Woike, K. Buse, Impedance spectroscopy of iron-doped lithium niobate crystals, Appl. Phys. B 91 (2008) 279–281.

DOI: 10.1007/s00340-008-2989-3

Google Scholar

[87] A. Weidenfelder, J. Shi, P. Fielitz, G. Borchardt, K.D. Becker, H. Fritze, Electrical and electromechanical properties of stoichiometric lithium niobate at high-temperatures, Solid State Ionics 225 (2012) 26–29.

DOI: 10.1016/j.ssi.2012.02.026

Google Scholar

[88] J. Rahn, P. Heitjans, H. Schmidt, Li Self-Diffusivities in Lithium Niobate Single Crystals as a Function of Li 2 O Content, J. Phys. Chem. C 119 (2015) 15557–15561.

DOI: 10.1021/acs.jpcc.5b04391

Google Scholar

[89] J. Rahn, B. Ruprecht, P. Heitjans, H. Schmidt, Lithium Diffusion in Li-Rich and Li-Poor Amorphous Lithium Niobate, Defect Diffus. Forum 363 (2015) 62–67.

DOI: 10.4028/www.scientific.net/ddf.363.62

Google Scholar

[90] J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt, Self-Diffusion of Lithium in Amorphous Lithium Niobate Layers, Z. Phys. Chemie 226 (2012) 439–448.

DOI: 10.1524/zpch.2012.0214

Google Scholar

[91] S. Indris, P. Heitjans, R. Uecker, T. Bredow, Local electronic structure in a LiAlO single crystal studied with Li7 NMR spectroscopy and comparison with quantum chemical calculations, Phys. Rev. B 74 (2006) 245120.

Google Scholar

[92] S. Indris, P. Heitjans, R. Uecker, B. Roling, Li Ion Dynamics in a LiAlO2 Single Crystal Studied by 7 Li NMR Spectroscopy and Conductivity Measurements, J. Phys. Chem. C 116 (2012) 14243–14247.

DOI: 10.1021/jp3042928

Google Scholar

[93] Y.J. Sun, O. Brandt, K.H. Ploog, Growth of M-plane GaN films on γ-LiAlO2 (100) with high phase purity, J. Vac. Sci. Technol. B 21 (2003) 1350–1353.

DOI: 10.1116/1.1585068

Google Scholar

[94] L. Wang, E. Richter, M. Weyers, Red luminescence from freestanding GaN grown on LiAlO2 substrate by hydride vapor phase epitaxy, Phys. Stat. Sol. A 204 (2007) 846–849.

DOI: 10.1002/pssa.200622409

Google Scholar

[95] P. Waltereit, O. Brandt, M. Ramsteiner, A. Trampert, H. Grahn, J. Menniger et al., M-plane GaN grown on γ-LiAlO2 (100): Nitride semiconductors free of internal electrostatic fields, Journal of Crystal Growth 227-228 (2001) 437–441.

DOI: 10.1016/s0022-0248(01)00739-4

Google Scholar

[96] X. Ke, X. Jun, D. Peizhen, Z. Yongzong, Z. Guoqing, Q. Rongsheng et al., γ-LiAlO2 single crystal: A novel substrate for GaN epitaxy, Journal of Crystal Growth 193 (1998) 127–132.

DOI: 10.1016/s0022-0248(98)00469-2

Google Scholar

[97] J. Lin, Z. Wen, X. Xu, N. Li, S. Song, Characterization and improvement of water compatibility of γ-LiAlO2 ceramic breeders, Fusion Engineering and Design 85 (2010) 1162–1166.

DOI: 10.1016/j.fusengdes.2010.02.027

Google Scholar

[98] N. Roux, C. Johnson, K. Noda, Properties and performance of tritium breeding ceramics, J. Nuclear Materials 191-194 (1992) 15–22.

DOI: 10.1016/s0022-3115(09)80005-6

Google Scholar

[99] S. Terada, I. Nagashima, K. Higaki, Y. Ito, Stability of LiAlO2 as electrolyte matrix for molten carbonate fuel cells, J. Power Sources 75 (1998) 223–229.

DOI: 10.1016/s0378-7753(98)00115-3

Google Scholar

[100] I. Villarreal, E. Morales, J.L. Acosta, Ionic conductivity and spectroscopic characterisation of γ-LiAlO2-filled polymer electrolytes, Angew. Makromol. Chem. 266 (1999) 24–29.

DOI: 10.1002/(sici)1522-9505(19990501)266:1<24::aid-apmc24>3.0.co;2-i

Google Scholar

[101] Lakshman Dissanayake, M. A. K., Nano-composite solid polymer electrolytes for solid state ionic devices: Ionics, Ionics 10 (2004) 221–225.

DOI: 10.1007/bf02382820

Google Scholar

[102] S.D. Kim, S.H. Hyun, M.Y. Shin, T.H. Lim, S.A. Hong, H.C. Lim, Phase and microstructure stabilities of LiAlO2 in molten Li/Na carbonate for molten carbonate fuel cells, J. Power Sources 143 (2005) 24–29.

DOI: 10.1016/j.jpowsour.2004.12.008

Google Scholar

[103] H. Cao, B. Xia, Y. Zhang, N. Xu, LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries, Solid State Ionics 176 (2005) 911–914.

DOI: 10.1016/j.ssi.2004.12.001

Google Scholar

[104] L. Lei, D. He, Y. Zou, W. Zhang, Z. Wang, M. Jiang et al., Phase transitions of LiAlO2 at high pressure and high temperature, J. Solid State Chem. 181 (2008) 1810–1815.

DOI: 10.1016/j.jssc.2008.04.006

Google Scholar

[105] M. Marezio, The crystal structure and anomalous dispersion of γ-LiAlO2, Acta Crystallogr. 19 (1965) 396–400.

DOI: 10.1107/s0365110x65003511

Google Scholar

[106] E. Witt, S. Nakhal, C.V. Chandran, M. Lerch, P. Heitjans, NMR and Impedance Spectroscopy Studies on Lithium Ion Diffusion in Microcrystalline γ-LiAlO2, Z. Phys. Chemie 229 (2015) 1327–1339.

DOI: 10.1515/zpch-2015-0587

Google Scholar

[107] D. Wohlmuth, V. Epp, P. Bottke, I. Hanzu, B. Bitschnau, I. Letofsky-Papst et al., Order vs. disorder—a huge increase in ionic conductivity of nanocrystalline LiAlO2 embedded in an amorphous-like matrix of lithium aluminate, J. Mater. Chem. A 2 (2014).

DOI: 10.1039/c4ta02923b

Google Scholar

[108] T. Matsuo, H. Ohno, K. Noda, S. Komishi, H. Yoshida, H. Watanabe, Nuclear magnetic resonance investigations of lithium diffusion in Li2O, Li2SiO3 and LiAlO2, J. Chem. Soc., Faraday Trans. 2 79 (1983) 1205–1216.

DOI: 10.1039/f29837901205

Google Scholar

[109] S. Konishi, H. Ohno, Electrical Conductivity of Polycrystalline Li2SiO3 and γ-LiAlO2, J. Amer. Ceram. Soc. 67 (1984) 418–419.

Google Scholar

[110] J. Langer, D. Wohlmuth, A. Kovalcik, V. Epp, F. Stelzer, M. Wilkening, Mechanical detection of ultraslow, Debye-like Li-ion motions in LiAlO2 single crystals, Annalen der Physik 527 (2015) 523–530.

DOI: 10.1002/andp.201500205

Google Scholar

[111] J. Rahn, E. Witt, P. Heitjans, H. Schmidt, Lithium Diffusion in Ion-Beam Sputtered Amorphous LiAlO2, Z. Phys. Chemie 229 (2015) 1341–1350.

DOI: 10.1515/zpch-2014-0658

Google Scholar

[112] H. Ishiyama, S. -C. Jeong, Y. Watanabe, Y. Hirayama, N. Imai, H. Miyatake et al., Nanoscale diffusion tracing by radioactive 8Li tracer, Jpn. J. Appl. Phys. 53 (2014) 110303.

DOI: 10.7567/jjap.53.110303

Google Scholar

[113] S. -C. Jeong, I. Katayama, H. Kawakami, Y. Watanabe, H. Ishiyama, N. Imai et al., On-Line Diffusion Tracing in Li Ionic Conductors by the Short-Lived Radioactive Beam of 8Li, Jpn. J. Appl. Phys. 47 (2008) 6413–6415.

DOI: 10.1143/jjap.47.6413

Google Scholar

[114] M. Kamata, Application of Neutron Radiography to Visualize the Motion of Lithium Ions in Lithium-Ion Conducting Materials, J. Electrochem. Soc. 143 (1996) 1866–1870.

DOI: 10.1149/1.1836916

Google Scholar

[115] M. Kamata, Erratum: Application of Neutron Radiography to Visualize the Motion of Lithium Ions in Lithium-Ion Conducting Materials, [J. Electrochem. Soc., 143, 1866 (1996)], J. Electrochem. Soc. 143 (1996) 2702.

DOI: 10.1149/1.1837077

Google Scholar

[116] S. Takai, Diffusion coefficient measurement of lithium ion in sintered Li1. 33Ti1. 67O4 by means of neutron radiography, Solid State Ionics 123 (1999) 165–172.

DOI: 10.1016/s0167-2738(99)00095-8

Google Scholar

[117] S. Takai, K. Yoshioka, H. Iikura, M. Matsubayashi, T. Yao, T. Esaka, Tracer diffusion coefficients of lithium ion in LiMn2O4 measured by neutron radiography, Solid State Ionics 256 (2014) 93–96.

DOI: 10.1016/j.ssi.2014.01.013

Google Scholar

[118] Verhoeven, V. W. J., I. M. de Schepper, G. Nachtegaal, A. P. M. Kentgens, E. M. Kelder, J. Schoonman, F. M. Mulder, Lithium Dynamics in LiMn2O4 Probed Directly by Two-Dimensional 7Li NMR, Phys. Rev. Lett. 86 (2001) 4314–4317.

DOI: 10.1103/physrevlett.86.4314

Google Scholar

[119] T. Okumura, T. Fukutsuka, Y. Uchimoto, N. Sakai, K. Yamaji, H. Yokokawa, Determination of lithium ion diffusion in lithium–manganese-oxide-spinel thin films by secondary-ion mass spectrometry, J. Power Sources 189 (2009) 643–645.

DOI: 10.1016/j.jpowsour.2008.09.043

Google Scholar

[120] Du Yongjuan, G.H. Frischat, W. Beier, A mass spectrometer method for the investigation of Li self-diffusion in mixed alkali glasses, J. Non-Crystalline Solids 112 (1989) 399–403.

DOI: 10.1016/0022-3093(89)90561-9

Google Scholar

[121] Y. Oishi, Y. Kamei, M. Akiyama, T. Yanagi, Self-diffusion coefficient of lithium in lithium oxide, J. Nuclear Materials 87 (1979) 341–344.

DOI: 10.1016/0022-3115(79)90570-1

Google Scholar

[122] V. B. Ptashnik, T. Y. Dunaeva, I. V. Myasnikov, Self-diffusion of lithium ions in a lithium-niobate single–crystal, Inorg. Mater. 21 (1985) 1814-1817.

Google Scholar