Soluble Salts Transport in Building Materials

Article Preview

Abstract:

The most widely used materials in building construction are porous materials and the combined effect of rising dampness with soluble salts is one major problem. This phenomenon is caused by the migration of the salt ions dissolved in water into the porous network of the construction materials in the building walls, which causes fractures in the materials after several cycles of crystallization/dissolution. This work presents an extensive experimental campaign with different cycles of water absorption (capillarity absorption tests) and drying (drying tests). The samples of building material used are red brick, and the samples were, previously, submitted to capillarity absorption tests with two different saturated solutions (sodium sulphate and potassium chloride). The results showed that the two salts studied influence the porous materials and their capillary coefficient in clearly different ways and the samples immersed in sodium chloride present higher drying rates than those immersed in a saturated sodium sulphate solution.

You might also be interested in these eBooks

Info:

Pages:

1-23

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.C.D. Gonçalves, Salt crystallization in plastered or rendered walls,, Technical University of Lisbon, (2007).

Google Scholar

[2] T.L. Brown, Chemistry: the central science: Pearson Education, (2009).

Google Scholar

[3] T.S.M.R. Rego, (2014). Efeito de soluções aquosas salinas nos processos de embebição de paredes com múltiplas camadas, MSc Thesis, Faculdade de Engenharia da universidade do Porto, Portugal.

DOI: 10.24873/j.rpemd.2022.10.879

Google Scholar

[4] C. Strege, (2004). On (pseudo-) polymorphic phase transformations. Martin-Luther-Universitat Halle-Wittenberg, Germany.

Google Scholar

[5] L. A. Rijniers, Salt crystallization in porous materials: an NMR study: Technische Universiteit Eindhoven, (2004).

Google Scholar

[6] A. E. Charola, (2000). Salts in the deterioration of porous materials: an overview. Journal of the American institute for conservation. vol. 39, pp.327-343.

DOI: 10.1179/019713600806113176

Google Scholar

[7] P. Puim, Controlo e reparação de anomalias devidas à presença de sais solúveis em edifícios antigos,, MSc Thesis, IST, Lisboa, (2010).

Google Scholar

[8] V. P. de Freitas, Humidade Ascencional vol. 3: FEUP edições, Porto, Portugal, (2008).

Google Scholar

[9] M. Janz, (1997). Methods of measuring the moisture diffusivity at high moisture levels. Report TVBM 3076.

Google Scholar

[10] T.D. Gonçalves and J. D. Rodrigues, (2006). Evaluating the salt content of salt-contaminated samples on the basis of their hygroscopic behaviour. Part I: Fundamentals, scope and accuracy of the method. Journal of Cultural Heritage. vol. 7, pp.79-84.

DOI: 10.1016/j.culher.2006.02.009

Google Scholar

[11] J.M.C.B. Azevedo, (2013). Absorção por Capilaridade de Soluções Aquosas Salinas em Materiais Porosos. MSc Thesis, Faculdade de Engenharia da universidade do Porto, Portugal.

DOI: 10.24873/j.rpemd.2022.09.876

Google Scholar

[12] M.A. Wilson et al., (1995). Water movement in porous building materials - XIII. Absorption into a two-layer composite. Building and Environment, vol. 30, pp.209-219.

DOI: 10.1016/0360-1323(94)00035-q

Google Scholar

[13] M.A. Wilson et al., (1995). Water movement in porous building materials - XIV. Absorption into a two-layer composite (SA< SB). Building and environment, vol. 30, pp.221-227.

DOI: 10.1016/0360-1323(94)00036-r

Google Scholar

[14] Lubelli B, Van Hees RPJ, Brocken HJP (2004) Experimental research on hygroscopic behaviour of porous specimens contaminated with salts. Constr Build Mater18(5):339-348.

DOI: 10.1016/j.conbuildmat.2004.02.007

Google Scholar

[15] E. Ruiz-Agudo et al., (2007). The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. Environmental geology, vol. 52, pp.269-281.

DOI: 10.1007/s00254-006-0476-x

Google Scholar

[16] V.A.G. Ribeiro, F.A.N. Silva, A.C. Azevedo and J.M.P.Q. Delgado (2020), The Effect of Soluble Mineral Salts in Ceramic Brick Masonry,, International Journal of Civil Engineering, v. 18 (6), 685–699.

DOI: 10.1007/s40999-020-00502-x

Google Scholar

[17] Doehne E, Price C (2010) Stone conservation: an overview of current research. Second edition, The Getty Conservation Institute, Los Angeles, USA.

Google Scholar

[18] Lindqvist J (2009) Rilem TC 203-RHM: Repair mortars for historic masonry. Testing of hardened mortars, a process of questioning and interpreting. Mater Struct 42: 853-865.

DOI: 10.1617/s11527-008-9455-x

Google Scholar

[19] Gummerson RJ, Hall C, Hoff W (1980) Water movement in porous building materials-II. Hydraulic suction and sorptivity of brick and other masonry materials. Build Environm 15(2):101-108.

DOI: 10.1016/0360-1323(80)90015-3

Google Scholar

[20] Zappia G, Sabbioni C, Riontino C, Gobbi G, Favoni O (1998) Exposure tests of building materials in urban atmosphere. Sci Total Environ 224:235-244.

DOI: 10.1016/s0048-9697(98)00359-3

Google Scholar

[21] N. Shahidzadeh-Bonn et al., (2010). Damage in porous media due to salt crystallization. Physical Review E, vol. 81, p.066110.

DOI: 10.1103/physreve.81.066110

Google Scholar

[22] RILEM, (1980). 25-PEM, Recommended tests to measure the deterioration of stone and to assess the efectiveness of treatment methods. Test nº II. 5–Evaporation curve. Materials & Structures. vol. 13, pp.205-207.

Google Scholar

[23] C. Rodriguez-Navarro et al., (2000). How does sodium sulphate crystallize? Implications for the decay and testing of building materials. Cement and concrete research. vol. 30, pp.1527-1534.

DOI: 10.1016/s0008-8846(00)00381-1

Google Scholar

[24] C. Normal, (1991). Misura dell'indice di asciugamento (drying index). Roma, CNR/ICR, Doc. vol. 29, p.88.

Google Scholar

[25] V.P.S. Brito, Influência dos revestimentos por pintura na secagem do suporte,, National Laboratory of Civil Engineering, (2009).

Google Scholar