Moisture Diffusion in Passion Fruit Seeds under Infrared Drying

Article Preview

Abstract:

In order to contribute for a better understanding of the moisture diffusion in infrared (IR) drying of residual seeds from passion fruit processing, the effective moisture diffusivity (Deff) in the particles was determined from experimental drying kinetics using two different approaches, in which it is considered either as a constant parameter during the process or as dependent on moisture ratio (XR). Experiments were conducted with the seeds arranged in a single layer and exposed to three IR source temperature levels (50, 65 and 80°C). The IR source was set at a distance of 15 cm from the samples. The average effective moisture diffusivity was in the range from 2.76 x 10-11 to 11.03 x 10-11 m2 s-1. The activation energy for IR drying was 53.3 kJ/mol. Results of Deff as a function of XR, obtained using the slope method, indicated that at higher IR source temperatures the vapor diffusion is the main mechanism of moisture transport, while at lowest drying temperature, the process is controlled by both liquid and vapor diffusion.

You might also be interested in these eBooks

Info:

Pages:

25-32

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.E.V. Araujo, E.G.B. Barbosa, A.C.L. Oliveira, R.S. Milagres, F.A.C Pinto., P.C. Corrêia, Physical properties of yellow passion fruit seeds (passiflora edulis) during the drying process, Sci. Hortic. 261 (2020) 109032.

DOI: 10.1016/j.scienta.2019.109032

Google Scholar

[2] R. Khir, Z. Pan, A. Salim, B. R. Hartsough, S. Mohamed, Moisture diffusivity of rough rice under infrared radiation drying, LWT - Food Sci. and Tech. 44 (2011) 1126-1132.

DOI: 10.1016/j.lwt.2010.10.003

Google Scholar

[3] R. M. Oliveira, K.S. Andrade, M.M. Prado, L.G. Marques, Study on hybrid drying with infrared radiation of watermelon seeds (Citrullus lanatus), Defect Diffus. Forum, 399 (2020). 173-182.

DOI: 10.4028/www.scientific.net/ddf.399.173

Google Scholar

[4] D.I. Onwude, N. Hashim, G. Chen, A. Putranto, N.R. Udoenoh, A fully coupled multiphase model for infrared‐convective drying of sweet potato, J. Sci. Food Agric. 101 (2020) 398-413.

DOI: 10.1002/jsfa.10649

Google Scholar

[5] N.N. Chen, M.Q. Chen, B.A. Fu, J.J. Song, Far-Infrared Irradiation Drying Behavior of Typical Biomass Briquettes, Energy, 121(2017) 726–738.

DOI: 10.1016/j.energy.2017.01.054

Google Scholar

[6] P. Salagnac, P. Glouannec, D. Le Charpentier, Numerical modeling of heat and mass transfer in porous medium during combined hot air, infrared and microwaves drying, Int. J. Heat Mass Transfer 47 (2004) 4479-4489.

DOI: 10.1016/j.ijheatmasstransfer.2004.04.015

Google Scholar

[7] M. Dak, N.K. Pareek, Effective moisture diffusivity of pomegranate arils under going microwave-vacuum drying, J. Food Eng. 122 (2014) 117-121.

DOI: 10.1016/j.jfoodeng.2013.08.040

Google Scholar

[8] C.V. Bezerra, L.H.M. Silva, D.F. Corrêa, A.M.C. Rodrigues, A modeling study for moisture diffusivities and moisture transfer coefficients in drying of passion fruit peel, Int. J. Heat Mass Transfer, 85 (2015) 750-755.

DOI: 10.1016/j.ijheatmasstransfer.2015.02.027

Google Scholar

[9] C.C. Claudio , M.T.B. Perazzini , H. Perazzini, Modeling and estimation of moisture transport properties of drying of potential Amazon biomass for renewable energy: Application of the two-compartment approach and diffusive models with constant or moisture-dependent coefficient, Renew Energy 181 (2022) 304-316.

DOI: 10.1016/j.renene.2021.09.054

Google Scholar

[10] M.P. Felizardo, G.R.F. Merlo, G.D. Maia, Modeling drying kinetics of Jacaranda mimosifolia seeds with variable effective diffusivity via diffusion model, Biosyst. Eng. 205 (2021) 234-245.

DOI: 10.1016/j.biosystemseng.2021.03.008

Google Scholar

[11] D. Chen, X. Liu, X. Zhu, A one-step non-isothermal method for the determination of effective moisture diffusivity in powdered biomass", Biomass Bioenergy, 50 (2013) 81-86.

DOI: 10.1016/j.biombioe.2013.01.023

Google Scholar

[12] F.J. Gómez-de la Cruz, J.M. Palomar-Carnicero, P.J. Casanova-Peláez, F. Cruz-Peragón, Experimental determination of effective moisture diffusivity during the drying of clean olive stone: Dependence of temperature, moisture content and sample thickness, Fuel Process. Technol. 1375 (2015) 320-326.

DOI: 10.1016/j.fuproc.2015.03.018

Google Scholar

[13] S. Pabis, D.S. Jayas, S. Cenkowski, Grain Drying. Theory and Practice, John Wiley & Sons Inc, New York, (1998).

Google Scholar

[14] G. Efremov, M. Markowski, I. Białobrzewski, M. Zielinska, Approach to calculation time-dependent moisture diffusivity for thin layered biological materials, Int. Comm. Heat Mass Transfer 35 (2008) 1069-1072.

DOI: 10.1016/j.icheatmasstransfer.2008.07.007

Google Scholar

[15] E.C. Moreno, P. Tiago, F.S. Rossi, A.P.B. Rossi, Morphometric characterization of yellow passion fruit and seeds (Passiflora edulis Sims f. Flavicarpa Degener). Biosph. Encycl., 11 (2015) 2975-2983.

Google Scholar

[16] M. J.Perea-Flores, V. Garibay-Febles, J.J. Chanona-Perez, G. Calderon-Dominguez, J.V. Mendez-Mendez, E. Palacios-Gonzalez, G.F. Gutierrez-Lopez, Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures, Ind. Crops Prod. 38 (2012) 64–71.

DOI: 10.1016/j.indcrop.2012.01.008

Google Scholar

[17] L.D.M.S. Borel, L.G Marques, M.M. Prado, Performance evaluation of an infrared heating-assisted fluidized bed dryer for processing bee-pollen grains, Chem. Eng. Process. - Process Intensification, 155 (2020) 108044.

DOI: 10.1016/j.cep.2020.108044

Google Scholar

[18] H.U. Hebbar, K.H. Vishwanathan, M.N. Ramesh, Development of combined infrared and hot air dryer hot air dryer for vegetables, J. Food Eng. 65 (2004) 557–563.

DOI: 10.1016/j.jfoodeng.2004.02.020

Google Scholar

[19] A.V. Luikov, Teoriya Sushki (Drying Theory), Energiya, Moscow, 1968 (in Russian).

Google Scholar

[20] C.A. Pickles, Drying kinetics of nickeliferous limonitic laterite ores, Minerals Eng. 16 (2003) 1327-1338.

DOI: 10.1016/s0892-6875(03)00206-1

Google Scholar