[1]
M.E.V. Araujo, E.G.B. Barbosa, A.C.L. Oliveira, R.S. Milagres, F.A.C Pinto., P.C. Corrêia, Physical properties of yellow passion fruit seeds (passiflora edulis) during the drying process, Sci. Hortic. 261 (2020) 109032.
DOI: 10.1016/j.scienta.2019.109032
Google Scholar
[2]
R. Khir, Z. Pan, A. Salim, B. R. Hartsough, S. Mohamed, Moisture diffusivity of rough rice under infrared radiation drying, LWT - Food Sci. and Tech. 44 (2011) 1126-1132.
DOI: 10.1016/j.lwt.2010.10.003
Google Scholar
[3]
R. M. Oliveira, K.S. Andrade, M.M. Prado, L.G. Marques, Study on hybrid drying with infrared radiation of watermelon seeds (Citrullus lanatus), Defect Diffus. Forum, 399 (2020). 173-182.
DOI: 10.4028/www.scientific.net/ddf.399.173
Google Scholar
[4]
D.I. Onwude, N. Hashim, G. Chen, A. Putranto, N.R. Udoenoh, A fully coupled multiphase model for infrared‐convective drying of sweet potato, J. Sci. Food Agric. 101 (2020) 398-413.
DOI: 10.1002/jsfa.10649
Google Scholar
[5]
N.N. Chen, M.Q. Chen, B.A. Fu, J.J. Song, Far-Infrared Irradiation Drying Behavior of Typical Biomass Briquettes, Energy, 121(2017) 726–738.
DOI: 10.1016/j.energy.2017.01.054
Google Scholar
[6]
P. Salagnac, P. Glouannec, D. Le Charpentier, Numerical modeling of heat and mass transfer in porous medium during combined hot air, infrared and microwaves drying, Int. J. Heat Mass Transfer 47 (2004) 4479-4489.
DOI: 10.1016/j.ijheatmasstransfer.2004.04.015
Google Scholar
[7]
M. Dak, N.K. Pareek, Effective moisture diffusivity of pomegranate arils under going microwave-vacuum drying, J. Food Eng. 122 (2014) 117-121.
DOI: 10.1016/j.jfoodeng.2013.08.040
Google Scholar
[8]
C.V. Bezerra, L.H.M. Silva, D.F. Corrêa, A.M.C. Rodrigues, A modeling study for moisture diffusivities and moisture transfer coefficients in drying of passion fruit peel, Int. J. Heat Mass Transfer, 85 (2015) 750-755.
DOI: 10.1016/j.ijheatmasstransfer.2015.02.027
Google Scholar
[9]
C.C. Claudio , M.T.B. Perazzini , H. Perazzini, Modeling and estimation of moisture transport properties of drying of potential Amazon biomass for renewable energy: Application of the two-compartment approach and diffusive models with constant or moisture-dependent coefficient, Renew Energy 181 (2022) 304-316.
DOI: 10.1016/j.renene.2021.09.054
Google Scholar
[10]
M.P. Felizardo, G.R.F. Merlo, G.D. Maia, Modeling drying kinetics of Jacaranda mimosifolia seeds with variable effective diffusivity via diffusion model, Biosyst. Eng. 205 (2021) 234-245.
DOI: 10.1016/j.biosystemseng.2021.03.008
Google Scholar
[11]
D. Chen, X. Liu, X. Zhu, A one-step non-isothermal method for the determination of effective moisture diffusivity in powdered biomass", Biomass Bioenergy, 50 (2013) 81-86.
DOI: 10.1016/j.biombioe.2013.01.023
Google Scholar
[12]
F.J. Gómez-de la Cruz, J.M. Palomar-Carnicero, P.J. Casanova-Peláez, F. Cruz-Peragón, Experimental determination of effective moisture diffusivity during the drying of clean olive stone: Dependence of temperature, moisture content and sample thickness, Fuel Process. Technol. 1375 (2015) 320-326.
DOI: 10.1016/j.fuproc.2015.03.018
Google Scholar
[13]
S. Pabis, D.S. Jayas, S. Cenkowski, Grain Drying. Theory and Practice, John Wiley & Sons Inc, New York, (1998).
Google Scholar
[14]
G. Efremov, M. Markowski, I. Białobrzewski, M. Zielinska, Approach to calculation time-dependent moisture diffusivity for thin layered biological materials, Int. Comm. Heat Mass Transfer 35 (2008) 1069-1072.
DOI: 10.1016/j.icheatmasstransfer.2008.07.007
Google Scholar
[15]
E.C. Moreno, P. Tiago, F.S. Rossi, A.P.B. Rossi, Morphometric characterization of yellow passion fruit and seeds (Passiflora edulis Sims f. Flavicarpa Degener). Biosph. Encycl., 11 (2015) 2975-2983.
Google Scholar
[16]
M. J.Perea-Flores, V. Garibay-Febles, J.J. Chanona-Perez, G. Calderon-Dominguez, J.V. Mendez-Mendez, E. Palacios-Gonzalez, G.F. Gutierrez-Lopez, Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures, Ind. Crops Prod. 38 (2012) 64–71.
DOI: 10.1016/j.indcrop.2012.01.008
Google Scholar
[17]
L.D.M.S. Borel, L.G Marques, M.M. Prado, Performance evaluation of an infrared heating-assisted fluidized bed dryer for processing bee-pollen grains, Chem. Eng. Process. - Process Intensification, 155 (2020) 108044.
DOI: 10.1016/j.cep.2020.108044
Google Scholar
[18]
H.U. Hebbar, K.H. Vishwanathan, M.N. Ramesh, Development of combined infrared and hot air dryer hot air dryer for vegetables, J. Food Eng. 65 (2004) 557–563.
DOI: 10.1016/j.jfoodeng.2004.02.020
Google Scholar
[19]
A.V. Luikov, Teoriya Sushki (Drying Theory), Energiya, Moscow, 1968 (in Russian).
Google Scholar
[20]
C.A. Pickles, Drying kinetics of nickeliferous limonitic laterite ores, Minerals Eng. 16 (2003) 1327-1338.
DOI: 10.1016/s0892-6875(03)00206-1
Google Scholar