Computational Fluid Dynamics Studies in the Drying of Industrial Clay Brick: The Effect of the Airflow Direction

Article Preview

Abstract:

The manufacture of ceramic brick goes through the stages of raw material extraction, clay homogenization, material conformation, drying and firing. Drying is the phase that needs greater care, as it involves removing part of the moisture from the brick, in order to preserve its quality after process. This work aims to predict heat and mass transfer in the drying of ceramic bricks in oven using computational fluid dynamics. Considering the constant thermophysical properties, a transient three-dimensional mathematical model was used to predict mass and energy transfer between the material and air during the process. Drying simulations at temperature of 100°C were performed with the air flow in the frontal direction to the ceramic brick holes and the results were compared with those obtained for the air flow in the perpendicular direction to the brick holes reported in the literature. It was found that the position of the brick in relation to the direction of air flow inside the oven affected directly the drying and heating kinetics, and the distribution of temperature and moisture content inside the brick. The positioning of the holes in the brick parallel to the direction of the air flow resulted in reduction at the drying time and, consequently, in energy savings in the process, more uniform drying, and improvement in the product quality.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] K. P. Sperandio, E. C. Oliveira, P. L. S. Paiva, S. S. Souza Junior, Analysis of the main problems of civil construction during the Coronavirus pandemic in Brazil, In: 16ª Noite Acadêmica. Anais, Centro Universitário UNIFACIG (2021). (In Portuguese).

Google Scholar

[2] T. Buchner, T. Kiefer, L. Zelaya-Lainez, W. Gaggl, T. Konegger, J. Fussl, A multitechnique, quantitative characterization of the pore space of fired bricks made of five clayey raw materials used in European brick industry, Applied Clay Science, 214 (2021) 1-16.

DOI: 10.1016/j.clay.2020.105884

Google Scholar

[3] M. Finkler, J. Webber, R. C. D. Cruz, J. E. Zorzi, Aditivo surfactante de fonte renovável para redução do consumo energético na extrusão de massas de cerâmica vermelha, Cerâmica, 64 (2018) 373-380.

DOI: 10.1590/0366-69132018643712342

Google Scholar

[4] S. Abbas, M. A. Saleem, S. M. S. Kazmi, M. J. Munir, Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties, Journal of Building Engineering, 14 (2017) 7-14.

DOI: 10.1016/j.jobe.2017.09.008

Google Scholar

[5] G. R. Tabor, D. Molinari, G. Juleff, Computational simulation of air flows through a Sri Lankan wind-driven furnace, Journal of Archaeological Science, 32 (2005) 753-766.

DOI: 10.1016/j.jas.2004.12.006

Google Scholar

[6] A. Mezquita, J. Boix, E. Monfort, G. Mallol, Energy saving in ceramic tile kilns: Cooling gas heat recovery, Applied Thermal Engineering, 65 (2014) 102-110.

DOI: 10.1016/j.applthermaleng.2014.01.002

Google Scholar

[7] E. F. S. Ciacco, J. R. Rocha, A. R. Coutinho, The energy consumption in the ceramic tile industry in Brazil, Applied Thermal Engineering, 113 (2017) 1283-1289.

DOI: 10.1016/j.applthermaleng.2016.11.068

Google Scholar

[8] D. Brough, A. Mezquita, S. Ferrer, C. Segarra, A. Chauhan, S. Almahmoud, N. Khordehgah, L. Ahmad, D. Middleton, H. I. Sewell, H. Jouhara, An experimental study and computational validation of waste heat recovery from a lab scale ceramic kiln using a vertical multi-pass heat pipe heat exchanger, Energy, 208 (2020) 1-20.

DOI: 10.1016/j.energy.2020.118325

Google Scholar

[9] H. Jouhara, D. Bertrand, B. Axcell, L. Montorsi, M. Venturelli, S. Almahmoud, M. Milani, L. Ahmad, A. Chauhan, Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery, Energy, 223 (2021) 1-23.

DOI: 10.1016/j.energy.2021.120037

Google Scholar

[10] T.S. Possamai, R. Oba, V. P. Nicolau, Numerical and experimental thermal analysis of an industrial kiln used for frit production, Applied Thermal Engineering, 48 (2012) 414-425.

DOI: 10.1016/j.applthermaleng.2012.05.025

Google Scholar

[11] G. S. Almeida, J. B. Silva, C. J. Silva, R. Swarnakar, G. A. Neves, A. G. B. De Lima, Heat and mass transport in an industrial tunnel dryer: Modeling and simulation applied to hollow bricks, Applied Thermal Engineering, 55 (2013) 78-86.

DOI: 10.1016/j.applthermaleng.2013.02.042

Google Scholar

[12] H. Z. Abou-Ziyan, Convective heat transfer from different brick arrangements in tunnel kilns, Applied Thermal Engineering, 24 (2004) 171-191.

DOI: 10.1016/j.applthermaleng.2003.08.014

Google Scholar

[13] H. A. Refaey, A. A. Abdel-Aziz, R. K. Ali, H. E. Abdelrahman, M. R. Salem, Augmentation of convective heat transfer in the cooling zone of brick tunnel kiln using guide vanes: An experimental study, International Journal of Thermal Sciences, 122 (2017) 172-185.

DOI: 10.1016/j.ijthermalsci.2017.08.018

Google Scholar

[14] H. A. Refaey, M. A. Alharthi, M. R. Salem, A. A. Abdel-Aziz, H. E. Abdelrahman, Numerical investigations of convective heat transfer for lattice settings in brick tunnel Kiln: CFD simulation with experimental validation. Thermal Science and Engineering Progress, 24 (2021) 1-10.

DOI: 10.1016/j.tsep.2021.100934

Google Scholar

[15] H. Shokouhmand, V. Abdollahi, S. Hosseini, K. Vahidkhah, Performance optimization of a brick dryer using porous simulation approach. Drying Technology: An International Journal, 29 (2011) 360-370.

DOI: 10.1080/07373937.2010.497954

Google Scholar

[16] J. B. Silva, G. S. Almeida, W. C. P. B. Lima, G. A. Neves, A. G. B. Lima, Heat and mass diffusion including shrinkage and hygrothermal stress during drying of holed ceramics bricks, Defect and Diffusion Forum, 312-315 (2011) 971-976.

DOI: 10.4028/www.scientific.net/ddf.312-315.971

Google Scholar

[17] M. K. T. Brito, D. B. T. Almeida, A. G. B. Lima, L. A. Rocha, E. S. Lima, V. A. B. Oliveira, Heat and mass transfer during drying of clay ceramic materials: a three-dimensional analytical study. Diffusion Foundations, 10 (2016) 93-106.

DOI: 10.4028/www.scientific.net/df.10.93

Google Scholar

[18] M. V. Araújo, J. M. P. Q. Delgado, A. G. B. Lima, On the Use of CFD in Thermal Analysis of Industrial Hollow Ceramic Brick. Diffusion Foundations, 10 (2016) 70-82.

DOI: 10.4028/www.scientific.net/df.10.70

Google Scholar

[19] M. V. Araújo, R. S. Santos, R. M. E. Silva, A. G. B. Lima, Drying of industrial hollow ceramic brick: analysis of the moisture content and temperature parameters, Defect and Diffusion Forum, 380 (2017) 72-78.

DOI: 10.4028/www.scientific.net/ddf.380.72

Google Scholar

[20] M. V. Araújo, R. S. Santos, R. M. Silva, J. B. S. Nascimento, W. R. G. Santos, A. G. B. Lima, Drying of industrial hollow ceramic brick: a numerical analysis using cfd, Defect and Diffusion Forum, 391 (2019) 48-53.

DOI: 10.4028/www.scientific.net/ddf.391.48

Google Scholar

[21] M. V. Araújo, A. S. Pereira, J. L. Oliveira, V. A. A. Brandão, F. A. Brasileiro Filho, R. M. Silva, A. G. B. Lima, Industrial ceramic brick drying in oven by CFD. Materials, 12 (2019) 2-22.

DOI: 10.3390/ma12101612

Google Scholar

[22] M. V. Araújo, B. R. B. Correia, V. A. A. Brandão, I. R. Oliveira, R. S. Santos, G. L. Oliveira Neto, L. P. L. Silva, A. G. B. Lima, Convective Drying of Ceramic Bricks by CFD: Transport Phenomena and Process Parameters Analysis, Energies, 13 (2020) 1-18.

DOI: 10.3390/en13082073

Google Scholar

[23] M. V. Araújo, Numerical simulation via CFD of the drying of industrial ceramic bricks, Thesis (Doctoral in Process Engineering), Postgraduate Program in Process Engineering, Center of Science and Technology, Federal University of Campina Grande, (2019) 212f. (In Portuguese).

Google Scholar

[24] G. S. Almeida, Simulation and experimentation of the drying of red ceramics in industrial drying systems. Thesis (Doctoral in Process Engineering). Postgraduate Program in Process Engineering, Center of Science and Technology, Federal University of Campina Grande, (2009). (In Portuguese).

Google Scholar

[25] Y. A. Çengel, A. J. Ghajar, Heat and Mass Transfer, Porto Alegre: AMGH, (2012). (In Portuguese).

Google Scholar

[26] J. B. Silva, Simulation and experimentation of the drying of hollow ceramic bricks, Thesis (Doctoral in Process Engineering). Postgraduate Program in Process Engineering, Center of Science and Technology, Federal University of Campina Grande, 2009. (In Portuguese).

Google Scholar

[27] G. Costantine, E. Harb, C. Bliard, C. Maalouf, E. Kinab, B. Abbès, F. Beaumont, G. Polidori. Experimental characterization of starch/beet-pulp bricks for Building applications: Drying kinetics and mechanical behavior. Construction and Building Materials 264 (2020) 1-13.

DOI: 10.1016/j.conbuildmat.2020.120270

Google Scholar

[28] H.A. Refaey,*, B. A. Almohammadi, A. A. Abdel-Aziz, H.E. Abdelrahman, H.A. Abd El-Ghany, M. A. Karali, M.W. Al-Dosoky. Transient thermal behavior in brick tunnel kiln with guide vanes: Experimental study. Case Studies in Thermal Engineering 33 (2022) 1-14.

DOI: 10.1016/j.csite.2022.101959

Google Scholar