[1]
K. P. Sperandio, E. C. Oliveira, P. L. S. Paiva, S. S. Souza Junior, Analysis of the main problems of civil construction during the Coronavirus pandemic in Brazil, In: 16ª Noite Acadêmica. Anais, Centro Universitário UNIFACIG (2021). (In Portuguese).
Google Scholar
[2]
T. Buchner, T. Kiefer, L. Zelaya-Lainez, W. Gaggl, T. Konegger, J. Fussl, A multitechnique, quantitative characterization of the pore space of fired bricks made of five clayey raw materials used in European brick industry, Applied Clay Science, 214 (2021) 1-16.
DOI: 10.1016/j.clay.2020.105884
Google Scholar
[3]
M. Finkler, J. Webber, R. C. D. Cruz, J. E. Zorzi, Aditivo surfactante de fonte renovável para redução do consumo energético na extrusão de massas de cerâmica vermelha, Cerâmica, 64 (2018) 373-380.
DOI: 10.1590/0366-69132018643712342
Google Scholar
[4]
S. Abbas, M. A. Saleem, S. M. S. Kazmi, M. J. Munir, Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties, Journal of Building Engineering, 14 (2017) 7-14.
DOI: 10.1016/j.jobe.2017.09.008
Google Scholar
[5]
G. R. Tabor, D. Molinari, G. Juleff, Computational simulation of air flows through a Sri Lankan wind-driven furnace, Journal of Archaeological Science, 32 (2005) 753-766.
DOI: 10.1016/j.jas.2004.12.006
Google Scholar
[6]
A. Mezquita, J. Boix, E. Monfort, G. Mallol, Energy saving in ceramic tile kilns: Cooling gas heat recovery, Applied Thermal Engineering, 65 (2014) 102-110.
DOI: 10.1016/j.applthermaleng.2014.01.002
Google Scholar
[7]
E. F. S. Ciacco, J. R. Rocha, A. R. Coutinho, The energy consumption in the ceramic tile industry in Brazil, Applied Thermal Engineering, 113 (2017) 1283-1289.
DOI: 10.1016/j.applthermaleng.2016.11.068
Google Scholar
[8]
D. Brough, A. Mezquita, S. Ferrer, C. Segarra, A. Chauhan, S. Almahmoud, N. Khordehgah, L. Ahmad, D. Middleton, H. I. Sewell, H. Jouhara, An experimental study and computational validation of waste heat recovery from a lab scale ceramic kiln using a vertical multi-pass heat pipe heat exchanger, Energy, 208 (2020) 1-20.
DOI: 10.1016/j.energy.2020.118325
Google Scholar
[9]
H. Jouhara, D. Bertrand, B. Axcell, L. Montorsi, M. Venturelli, S. Almahmoud, M. Milani, L. Ahmad, A. Chauhan, Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery, Energy, 223 (2021) 1-23.
DOI: 10.1016/j.energy.2021.120037
Google Scholar
[10]
T.S. Possamai, R. Oba, V. P. Nicolau, Numerical and experimental thermal analysis of an industrial kiln used for frit production, Applied Thermal Engineering, 48 (2012) 414-425.
DOI: 10.1016/j.applthermaleng.2012.05.025
Google Scholar
[11]
G. S. Almeida, J. B. Silva, C. J. Silva, R. Swarnakar, G. A. Neves, A. G. B. De Lima, Heat and mass transport in an industrial tunnel dryer: Modeling and simulation applied to hollow bricks, Applied Thermal Engineering, 55 (2013) 78-86.
DOI: 10.1016/j.applthermaleng.2013.02.042
Google Scholar
[12]
H. Z. Abou-Ziyan, Convective heat transfer from different brick arrangements in tunnel kilns, Applied Thermal Engineering, 24 (2004) 171-191.
DOI: 10.1016/j.applthermaleng.2003.08.014
Google Scholar
[13]
H. A. Refaey, A. A. Abdel-Aziz, R. K. Ali, H. E. Abdelrahman, M. R. Salem, Augmentation of convective heat transfer in the cooling zone of brick tunnel kiln using guide vanes: An experimental study, International Journal of Thermal Sciences, 122 (2017) 172-185.
DOI: 10.1016/j.ijthermalsci.2017.08.018
Google Scholar
[14]
H. A. Refaey, M. A. Alharthi, M. R. Salem, A. A. Abdel-Aziz, H. E. Abdelrahman, Numerical investigations of convective heat transfer for lattice settings in brick tunnel Kiln: CFD simulation with experimental validation. Thermal Science and Engineering Progress, 24 (2021) 1-10.
DOI: 10.1016/j.tsep.2021.100934
Google Scholar
[15]
H. Shokouhmand, V. Abdollahi, S. Hosseini, K. Vahidkhah, Performance optimization of a brick dryer using porous simulation approach. Drying Technology: An International Journal, 29 (2011) 360-370.
DOI: 10.1080/07373937.2010.497954
Google Scholar
[16]
J. B. Silva, G. S. Almeida, W. C. P. B. Lima, G. A. Neves, A. G. B. Lima, Heat and mass diffusion including shrinkage and hygrothermal stress during drying of holed ceramics bricks, Defect and Diffusion Forum, 312-315 (2011) 971-976.
DOI: 10.4028/www.scientific.net/ddf.312-315.971
Google Scholar
[17]
M. K. T. Brito, D. B. T. Almeida, A. G. B. Lima, L. A. Rocha, E. S. Lima, V. A. B. Oliveira, Heat and mass transfer during drying of clay ceramic materials: a three-dimensional analytical study. Diffusion Foundations, 10 (2016) 93-106.
DOI: 10.4028/www.scientific.net/df.10.93
Google Scholar
[18]
M. V. Araújo, J. M. P. Q. Delgado, A. G. B. Lima, On the Use of CFD in Thermal Analysis of Industrial Hollow Ceramic Brick. Diffusion Foundations, 10 (2016) 70-82.
DOI: 10.4028/www.scientific.net/df.10.70
Google Scholar
[19]
M. V. Araújo, R. S. Santos, R. M. E. Silva, A. G. B. Lima, Drying of industrial hollow ceramic brick: analysis of the moisture content and temperature parameters, Defect and Diffusion Forum, 380 (2017) 72-78.
DOI: 10.4028/www.scientific.net/ddf.380.72
Google Scholar
[20]
M. V. Araújo, R. S. Santos, R. M. Silva, J. B. S. Nascimento, W. R. G. Santos, A. G. B. Lima, Drying of industrial hollow ceramic brick: a numerical analysis using cfd, Defect and Diffusion Forum, 391 (2019) 48-53.
DOI: 10.4028/www.scientific.net/ddf.391.48
Google Scholar
[21]
M. V. Araújo, A. S. Pereira, J. L. Oliveira, V. A. A. Brandão, F. A. Brasileiro Filho, R. M. Silva, A. G. B. Lima, Industrial ceramic brick drying in oven by CFD. Materials, 12 (2019) 2-22.
DOI: 10.3390/ma12101612
Google Scholar
[22]
M. V. Araújo, B. R. B. Correia, V. A. A. Brandão, I. R. Oliveira, R. S. Santos, G. L. Oliveira Neto, L. P. L. Silva, A. G. B. Lima, Convective Drying of Ceramic Bricks by CFD: Transport Phenomena and Process Parameters Analysis, Energies, 13 (2020) 1-18.
DOI: 10.3390/en13082073
Google Scholar
[23]
M. V. Araújo, Numerical simulation via CFD of the drying of industrial ceramic bricks, Thesis (Doctoral in Process Engineering), Postgraduate Program in Process Engineering, Center of Science and Technology, Federal University of Campina Grande, (2019) 212f. (In Portuguese).
Google Scholar
[24]
G. S. Almeida, Simulation and experimentation of the drying of red ceramics in industrial drying systems. Thesis (Doctoral in Process Engineering). Postgraduate Program in Process Engineering, Center of Science and Technology, Federal University of Campina Grande, (2009). (In Portuguese).
Google Scholar
[25]
Y. A. Çengel, A. J. Ghajar, Heat and Mass Transfer, Porto Alegre: AMGH, (2012). (In Portuguese).
Google Scholar
[26]
J. B. Silva, Simulation and experimentation of the drying of hollow ceramic bricks, Thesis (Doctoral in Process Engineering). Postgraduate Program in Process Engineering, Center of Science and Technology, Federal University of Campina Grande, 2009. (In Portuguese).
Google Scholar
[27]
G. Costantine, E. Harb, C. Bliard, C. Maalouf, E. Kinab, B. Abbès, F. Beaumont, G. Polidori. Experimental characterization of starch/beet-pulp bricks for Building applications: Drying kinetics and mechanical behavior. Construction and Building Materials 264 (2020) 1-13.
DOI: 10.1016/j.conbuildmat.2020.120270
Google Scholar
[28]
H.A. Refaey,*, B. A. Almohammadi, A. A. Abdel-Aziz, H.E. Abdelrahman, H.A. Abd El-Ghany, M. A. Karali, M.W. Al-Dosoky. Transient thermal behavior in brick tunnel kiln with guide vanes: Experimental study. Case Studies in Thermal Engineering 33 (2022) 1-14.
DOI: 10.1016/j.csite.2022.101959
Google Scholar