[1]
Muzychka, Y. S., & Yovanovich, M. M. (2009). Pressure drop in laminar developing flow in noncircular ducts: A scaling and modeling approach. Journal of Fluids Engineering, 131(11).
DOI: 10.1115/1.4000377
Google Scholar
[2]
Schenk, J., & Han, B. S. (1967). Heat transfer from laminar flow in ducts with elliptic cross-section. Applied Scientific Research, 17(2), 96-114.
DOI: 10.1007/bf00419779
Google Scholar
[3]
Rao, S. S., Ramacharyulu, N. C. P., & Krishnamurty, V. V. G. (1969). Laminar forced convection in elliptic ducts. Applied Scientific Research, 21(1), 185-193.
DOI: 10.1007/bf00411606
Google Scholar
[4]
Kakac, S., & Özgü, M. R. (1969). Analysis of laminar flow forced convection heat transfer in the entrance region of a circular pipe. Wärme-und Stoffübertragung, 2(4), 240-245.
DOI: 10.1007/bf00751357
Google Scholar
[5]
Irvine Jr, T. F. (1963). Non-circular duct convective heat transfer. In Modern Developments in Heat Transfer (pp.1-17). Academic Press New York.
DOI: 10.1016/b978-0-12-395635-4.50005-x
Google Scholar
[6]
Shah, R. K. (1975). Laminar flow friction and forced convection heat transfer in ducts of arbitrary geometry. International Journal of Heat and Mass Transfer, 18(7-8), 849-862.
DOI: 10.1016/0017-9310(75)90176-3
Google Scholar
[7]
Vaz Júnior, Miguel. (1986). Uma solução do problema de transferência de calor conjugado em regime laminar em dutos anulares duplamente aletados. Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia Mecânica.
DOI: 10.18605/2175-7275/cereus.v10n2p12-25
Google Scholar
[8]
Nirenberg, H. Correção do fator de atrito para região anular excentrica.Tese de Doutorado. Universidade Federal do Rio de Janeiro, Rio de Janeiro,(2017).
DOI: 10.52041/srap.15317
Google Scholar
[9]
Lee, Y. M., & Kuo, Y. M. (1998). Laminar flow in annuli ducts with constant wall temperature. International communications in heat and mass transfer, 25(2), 227-236.
DOI: 10.1016/s0735-1933(98)00009-8
Google Scholar
[10]
Lee, Y. M., & Lee, P. C. (2001). Laminar flow in elliptic ducts with and without central circular cores for constant wall temperature. International communications in heat and mass transfer, 28(8), 1115-1124.
DOI: 10.1016/s0735-1933(01)00314-1
Google Scholar
[11]
dos Santos Júnior, V. A., de Lima, A. G. B., de Farias Neto, S. R., Gomes, I. F., & da Cunha Teixeira, J. (2021). Laminar fluid flow in concentric annular ducts of non-conventional cross-section applying GBI method. Research, Society and Development, 10(1), e10710111547-e10710111547.
DOI: 10.33448/rsd-v10i1.11547
Google Scholar
[12]
dos Santos Júnior, V. A., de Farias Neto, S. R., de Lima, A. G. B., Gomes, I. F., Galvão, I. B., Franco, C. M. R., & do Carmo, J. E. F. (2020). Heavy Oil Laminar Flow in Corrugated Ducts: A Numerical Study Using the Galerkin-Based Integral Method. Energies, 13(6), 1-13.
DOI: 10.3390/en13061363
Google Scholar
[13]
Santos Júnior, V. A. D. (2018). Escoamento de fluido em dutos de seção arbitrária utilizando o método integral baseado em Galerkin. Estudo de caso: óleo pesado.
Google Scholar
[14]
Haji-sheikh, A.; Beck, J. V. Green's Function Partitioning in Galerkin-Based Integral Solution of the Difusion Equation. Journal of Heat Transfer. v. 112, pp.28-34, (1990).
DOI: 10.1115/1.2910360
Google Scholar
[15]
Lakshminarayanan, R.; Haji-Sheik, A. Entrance Heat Transfer in Isosceles and Right Triangular Ducts. Techinical Notes. J. Themophysics. v. 6, n. 1, pp.167-171, (1992).
DOI: 10.2514/3.336
Google Scholar
[16]
Degheidy, A. R.; Sallah, M.; Attia, M. T. and Attala, M. R. On Galerkin method for solving radiative heat transfer in finite slabs with spatially-variable refractive index. International Journal of Thermal Sciences. 100, pp.416-422, (2016).
DOI: 10.1016/j.ijthermalsci.2015.09.028
Google Scholar
[17]
Petrovsky, I.G. Lectures on partial differential equations. New York: Interscience, (1971).
Google Scholar
[18]
Browder, F.E. Problemes Non-Lineaires. Vol. 15. Montréal: Presses de l'Université de Montréal, (1966).
Google Scholar
[19]
Dautray, R.; Lions, J.L. Mathematical Analysis and Numerical Methods for Science and Technology. Volume 6. Evolution Problems II. Springer Science & Business Media, (2012).
Google Scholar
[20]
Assan, A. E. Finite Elements Methods-First Steps. Unicamp, Campinas, Brazil, (2003).
Google Scholar
[21]
Cooper, J.M. Introduction to partial differential equations with MATLAB. Springer Science & Business Media, (2012).
Google Scholar
[22]
Moharana, M.K.; Khandekar, S. Generalized formulation for estimating pressure drop in fully-developed laminar flow in singly and doubly connected channels of non-circular cross-sections. Computer Methods in Applied Mechanics and Engineering 2013. 259, 64-76.
DOI: 10.1016/j.cma.2013.03.005
Google Scholar
[23]
Courant, R.; David H. Methods of Mathematical Physics: Partial Differential Equations. John Wiley & Sons, New York, United States, (2008).
Google Scholar
[24]
Thomas, J.E. Fundamentals of Petroleum Engineering. 2nd ed.; Interciência: PETROBRAS, Rio de Janeiro, Brazil, 2004. (In Portuguese).
Google Scholar
[25]
Franco, C.M.R.; Barbosa de Lima, A.G.; Silva, J.V.; Nunes, A.G. Applying liquid diffusion model for continuous drying of rough rice in fixed bed. In Defect and Diffusion Forum 2016, 369, 152-156.
DOI: 10.4028/www.scientific.net/ddf.369.152
Google Scholar