Heat Transfer and Fluid Flow in Concentric Annular Ducts Using the Galerkin-Based Integral Method: A Numerical Study

Article Preview

Abstract:

In this paper, we cope with the problem of presents a numerical analysis for heat transfer in a duct with geometry circular annular elliptical using the Galerkin-based integral method. The analysis is performed for different geometries of the duct (circular annular circular and circular annular elliptical), and the method is validated for circular cylindrical geometry. Parameters such as mean temperature and mean and location Nusselt numbers for two boundary conditions: constant wall temperature and axial constant heat flux in the wall with constant wall temperature are presented and analyzed.

You might also be interested in these eBooks

Info:

Pages:

53-68

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Muzychka, Y. S., & Yovanovich, M. M. (2009). Pressure drop in laminar developing flow in noncircular ducts: A scaling and modeling approach. Journal of Fluids Engineering, 131(11).

DOI: 10.1115/1.4000377

Google Scholar

[2] Schenk, J., & Han, B. S. (1967). Heat transfer from laminar flow in ducts with elliptic cross-section. Applied Scientific Research, 17(2), 96-114.

DOI: 10.1007/bf00419779

Google Scholar

[3] Rao, S. S., Ramacharyulu, N. C. P., & Krishnamurty, V. V. G. (1969). Laminar forced convection in elliptic ducts. Applied Scientific Research, 21(1), 185-193.

DOI: 10.1007/bf00411606

Google Scholar

[4] Kakac, S., & Özgü, M. R. (1969). Analysis of laminar flow forced convection heat transfer in the entrance region of a circular pipe. Wärme-und Stoffübertragung, 2(4), 240-245.

DOI: 10.1007/bf00751357

Google Scholar

[5] Irvine Jr, T. F. (1963). Non-circular duct convective heat transfer. In Modern Developments in Heat Transfer (pp.1-17). Academic Press New York.

DOI: 10.1016/b978-0-12-395635-4.50005-x

Google Scholar

[6] Shah, R. K. (1975). Laminar flow friction and forced convection heat transfer in ducts of arbitrary geometry. International Journal of Heat and Mass Transfer, 18(7-8), 849-862.

DOI: 10.1016/0017-9310(75)90176-3

Google Scholar

[7] Vaz Júnior, Miguel. (1986). Uma solução do problema de transferência de calor conjugado em regime laminar em dutos anulares duplamente aletados. Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia Mecânica.

DOI: 10.18605/2175-7275/cereus.v10n2p12-25

Google Scholar

[8] Nirenberg, H. Correção do fator de atrito para região anular excentrica.Tese de Doutorado. Universidade Federal do Rio de Janeiro, Rio de Janeiro,(2017).

DOI: 10.52041/srap.15317

Google Scholar

[9] Lee, Y. M., & Kuo, Y. M. (1998). Laminar flow in annuli ducts with constant wall temperature. International communications in heat and mass transfer, 25(2), 227-236.

DOI: 10.1016/s0735-1933(98)00009-8

Google Scholar

[10] Lee, Y. M., & Lee, P. C. (2001). Laminar flow in elliptic ducts with and without central circular cores for constant wall temperature. International communications in heat and mass transfer, 28(8), 1115-1124.

DOI: 10.1016/s0735-1933(01)00314-1

Google Scholar

[11] dos Santos Júnior, V. A., de Lima, A. G. B., de Farias Neto, S. R., Gomes, I. F., & da Cunha Teixeira, J. (2021). Laminar fluid flow in concentric annular ducts of non-conventional cross-section applying GBI method. Research, Society and Development, 10(1), e10710111547-e10710111547.

DOI: 10.33448/rsd-v10i1.11547

Google Scholar

[12] dos Santos Júnior, V. A., de Farias Neto, S. R., de Lima, A. G. B., Gomes, I. F., Galvão, I. B., Franco, C. M. R., & do Carmo, J. E. F. (2020). Heavy Oil Laminar Flow in Corrugated Ducts: A Numerical Study Using the Galerkin-Based Integral Method. Energies, 13(6), 1-13.

DOI: 10.3390/en13061363

Google Scholar

[13] Santos Júnior, V. A. D. (2018). Escoamento de fluido em dutos de seção arbitrária utilizando o método integral baseado em Galerkin. Estudo de caso: óleo pesado.

Google Scholar

[14] Haji-sheikh, A.; Beck, J. V. Green's Function Partitioning in Galerkin-Based Integral Solution of the Difusion Equation. Journal of Heat Transfer. v. 112, pp.28-34, (1990).

DOI: 10.1115/1.2910360

Google Scholar

[15] Lakshminarayanan, R.; Haji-Sheik, A. Entrance Heat Transfer in Isosceles and Right Triangular Ducts. Techinical Notes. J. Themophysics. v. 6, n. 1, pp.167-171, (1992).

DOI: 10.2514/3.336

Google Scholar

[16] Degheidy, A. R.; Sallah, M.; Attia, M. T. and Attala, M. R. On Galerkin method for solving radiative heat transfer in finite slabs with spatially-variable refractive index. International Journal of Thermal Sciences. 100, pp.416-422, (2016).

DOI: 10.1016/j.ijthermalsci.2015.09.028

Google Scholar

[17] Petrovsky, I.G. Lectures on partial differential equations. New York: Interscience, (1971).

Google Scholar

[18] Browder, F.E. Problemes Non-Lineaires. Vol. 15. Montréal: Presses de l'Université de Montréal, (1966).

Google Scholar

[19] Dautray, R.; Lions, J.L. Mathematical Analysis and Numerical Methods for Science and Technology. Volume 6. Evolution Problems II. Springer Science & Business Media, (2012).

Google Scholar

[20] Assan, A. E. Finite Elements Methods-First Steps. Unicamp, Campinas, Brazil, (2003).

Google Scholar

[21] Cooper, J.M. Introduction to partial differential equations with MATLAB. Springer Science & Business Media, (2012).

Google Scholar

[22] Moharana, M.K.; Khandekar, S. Generalized formulation for estimating pressure drop in fully-developed laminar flow in singly and doubly connected channels of non-circular cross-sections. Computer Methods in Applied Mechanics and Engineering 2013. 259, 64-76.

DOI: 10.1016/j.cma.2013.03.005

Google Scholar

[23] Courant, R.; David H. Methods of Mathematical Physics: Partial Differential Equations. John Wiley & Sons, New York, United States, (2008).

Google Scholar

[24] Thomas, J.E. Fundamentals of Petroleum Engineering. 2nd ed.; Interciência: PETROBRAS, Rio de Janeiro, Brazil, 2004. (In Portuguese).

Google Scholar

[25] Franco, C.M.R.; Barbosa de Lima, A.G.; Silva, J.V.; Nunes, A.G. Applying liquid diffusion model for continuous drying of rough rice in fixed bed. In Defect and Diffusion Forum 2016, 369, 152-156.

DOI: 10.4028/www.scientific.net/ddf.369.152

Google Scholar