Characterization of Dislocations in 4H-SiC

Article Preview

Abstract:

Accurate characterization of dislocations is crucial for optimizing the performance of SiC-based power devices. The traditional way to measure dislocation density in SiC industry is KOH etching, a destructive approach that makes the wafer no longer available for epitaxial growth. Another major limitation of this technique is the accuracy of the data since some dislocations can be hardly recognized. For example, the etch pit of threading screw dislocation is similar to that of threading edge dislocation, both of which are usually in hexagonal shape while the primary difference is the size. However, those challenges and limitations in KOH etching do not exist in X-ray topography. In this paper, the non-destructive approach, X-ray topography, is introduced to characterize dislocations in 4H-SiC industry. Threading screw dislocations were measured by both KOH etching and X-ray topography, the result of which indicates that some threading screw dislocations clearly visible in X-ray topograph are not recognizable in KOH etching image. In addition, some 60° prismatic dislocations not recognized in KOH etching image can be observed in X-ray topographs. Moreover, unlike destructive KOH etching, wafers measured by X-ray topography can be further used for annealing, epitaxial growth, ion implantation and etc., which is beneficial to SiC fundamental research.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology, (Wiley IEEE press, Singapore, 2014)

Google Scholar

[2] T. Kimoto, Prog. Bulk and epitaxial growth of silicon carbide, Cryst. Growth Charact. Mater. 62 (2016) 329-351.

Google Scholar

[3] A. R. Powell, J. J. Sumakeris, Y. Khlebnikov, M. J. Paisley, R. T. Leonard, E. Deyneka, S. Gangwal, J. Ambati, V. Tsevtkov, J. Seaman, A. McClure, C. Horton, O. Kramarenko, V. Sakhalkar, M. O'Loughlin, A. A. Burk, J. Q. Guo, M. Dudley, E. Balkas, Bulk growth of large area SiC crystals. Mater. Sci. Forum, 858 (2016) 5-10.

DOI: 10.4028/www.scientific.net/msf.858.5

Google Scholar

[4] X. L. Yang, Y. N. Pan, C. Gao, Q. R. Liang, L. P. Wang, J. Y. Zhang, Y. H. Gao, X. X. Ning, H. Y. Zhang, Development of high quality 8 inch 4H-SiC substrates, Solid State Phenom., 344 (2023) 41-46.

DOI: 10.4028/p-x44871

Google Scholar

[5] P. J Wellmann, Review of SiC crystal growth technology, Semicond. Sci. Technol. 33 (2018) 103001

DOI: 10.1088/1361-6641/aad831

Google Scholar

[6] J. Huang, T. Chen, J. Lee, C. Huang, L. Hong. A perspective on leakage current induced by threading dislocations in 4H-SiC Schottky barrier diodes, Mater. Lett., 310 (2022) 131506

DOI: 10.1016/j.matlet.2021.131506

Google Scholar

[7] Y. Z. Yao, Y. Ishikawa, Y. Sugawara, H. Saitoh1, K. Danno1, H. Suzuki1, Y. Kawai1, and N. Shibata, Molten KOH etching with Na2O2 additive for dislocation revelation in 4H-SiC epilayers and substrates, Jpn. J. Appl. Phys. 50 (2011) 075502

DOI: 10.7567/jjap.50.075502

Google Scholar

[8] Y. Z. Yao, Y. Ishikawa, Y. Sugawara, K. Sato, K. Danno, H. Suzuki, T. Bessho, S. Yamaguchi, K. Nishikawa, J. Cryst. Growth, 364 (2013) 7-10.

Google Scholar

[9] K. Omote, Crystal defects in SiC wafers and a new X-ray topography system, The Rigaku Journal, 29(1) (2013) 1-8.

Google Scholar

[10] C. Reimann, C. Kranert, Non-destructive characterization of crystallographic defects of SiC substrates using X-ray topography for R&D and quality assurance in production, The Rigaku Journal, 37(2) (2021) 33-37.

Google Scholar

[11] K. Inaba, Defect structure analysis in single crystal substrates using XRTmicron, Rigaku Journal, 36(2) (2020) 11-18.

Google Scholar

[12] A. Soukhojak, T. Stannard, I. Manning, C. Lee, G. Chung, M. Gave, E. Sanchez, Measurement of Dislocation Density in SiC Wafers Using Production XRT, Mater. Sci. Forum, 162, (2022) 304-308

DOI: 10.4028/p-37781z

Google Scholar

[13] S. Sun, H. Song, J. Yang, H. Qu, W. Wang, J. Jian, The etching behaviour of dislocations in N-doped 4H-SiC substrate, J. Cryst. Growth, 618 (2023) 1227318

DOI: 10.1016/j.jcrysgro.2023.127318

Google Scholar

[14] L. Dong, L. Zheng, X. Liu, F. Zhang, G. Yan, X. Li, G. Sun, Z. Wang, Defect revelation and evaluation of 4H Silicon Carbide by optimized molten KOH etching method. Mater. Sci. Forum, 740-742 (2013) 243-246

DOI: 10.4028/www.scientific.net/msf.740-742.243

Google Scholar

[15] B. Raghothamachar, M. Dudley, G. Dhanaraj, X-ray topography techniques for defect characterization of crystals, in: G. Dhanaraj, K. Byrappa, V. Prasad & M. Dudley (Eds.) Springer Handbook of Crystal Growth, Springer Handbooks. Springer, Berlin, Heidelberg. 2010, p.1425–1451

DOI: 10.1007/978-3-540-74761-1_42

Google Scholar

[16] H. Peng, T. Ailihumaer, F. Fujie, Z. Chen, B. Raghothamachar, M. Dudley, Influence of surface relaxation on the contrast of threading edge dislocations in synchrotron X-ray topographs under the condition of g· b= 0 and g· b× l= 0, J. Appl. Cryst., 54 (2021) 439-443.

DOI: 10.1107/s160057672100025x

Google Scholar

[17] S. Hu, Y. Liu, Q. Cheng, Z. Chen, X. Tong, B. Raghothamachar, M. Dudley, Investigation of defect formation at the early stage of PVT-grown 4H-SiC crystals, J. Cryst. Growth, 628 (2024) 127542

DOI: 10.1016/j.jcrysgro.2023.127542

Google Scholar

[18] J. Guo, Y. Yang, B. Raghothamachar, J. Kim, M. Dudley, G. Chung, E. Sanchez, J. Quast, I. Manning, Prismatic slip in PVT-grown 4H-SiC crystals, J. Electron. Mater. 46 4 (2017) 2040-2044

DOI: 10.1007/s11664-016-5118-9

Google Scholar