Effect of Additional Concentration of ATMP Inhibitor on The Formation of 40% Phosphoric Acid Scale

Article Preview

Abstract:

Calcium sulfate (CaSO₄) scale formation during the phosphoric acid (H₃PO₄) production process presents significant operational challenges. Key variables influencing scale formation include temperature, pressure, stirring speed, and supersaturation. This study aims to evaluate the effect of varying concentrations of ATMP inhibitors on the mass of CaSO₄ scale in a 40% phosphoric acid solution and to analyze the composition of the resulting scale. The experimental procedure involved the addition of ATMP inhibitors at different concentrations, while temperature and stirring speed were varied. The solution was circulated through a sample housing for two hours, after which the mass of the formed scale was measured, and X-Ray Fluorescence (XRF) analysis was performed. The optimal concentration of ATMP inhibitors was found to be 9 ppm at a temperature of 40°C and a stirring speed of 235 rpm. Results indicated that the composition of the CaSO₄ scale produced with ATMP inhibitors was significantly lower than that of samples without inhibitors, with XRF analysis revealing an 8% reduction in CaSO₄ levels

You have full access to the following eBook

Info:

* - Corresponding Author

[1] W. A. Putranto and S. Khaeruman, "Pengaruh Laju Aliran, Suhu Dan Aditif Asam Tartrat (C4H6O6) Terhadap Morfologi Dan Fasa Kristal Pada Kerak Kalsium Karbonat (CaCO3)," Momentum, vol. 16, no. 2, p.105–110, 2020.

DOI: 10.36499/mim.v16i2.3762

Google Scholar

[2] F. Fatra and J. Suwignyo, "Analisa Pengaruh Penambahan Asam Tartrat Terhadap Pembentukan Kerak Di Dalam Pipa Pengeboran Minyak Bumi," 2020.

DOI: 10.31316/jatve.v1i2.991

Google Scholar

[3] A. Zeino, M. Albakri, M. Khaled, and M. Zarzour, "Comparative study of the synergistic effect of ATMP and DTPMPA on CaSO4 scale inhibition and evaluation of induction time effect," Journal of Water Process Engineering, vol. 21, p.1–8, Feb. 2018.

DOI: 10.1016/j.jwpe.2017.11.013

Google Scholar

[4] F. Fatra and J. Suwignyo, "Analisa Pengaruh Penambahan Asam Tartrat Terhadap Pembentukan Kerak Di Dalam Pipa Pengeboran Minyak Bumi," Journal of Automotive Technology Vocational Education, vol. 1, no. 2, p.1–8, Oct. 2020.

DOI: 10.31316/JATVE.V1I2.991

Google Scholar

[5] M. F. Mady, A. H. Karaly, S. Abdel-Azeim, I. A. Hussein, M. A. Kelland, and A. Younis, "Phosphonated Lower-Molecular-Weight Polyethyleneimines as Oilfield Scale Inhibitors: An Experimental and Theoretical Study," Ind Eng Chem Res, vol. 61, no. 27, p.9586–9599, Jul. 2022.

DOI: 10.1021/acs.iecr.2c01730

Google Scholar

[6] F. Ivušić, V. Alar, and H. Otmačić Ćurković, "Aminotris(Methylenephosphonic acid) and sodium gluconate as inhibitors of carbon steel corrosion in 3.5% NaCl solution," International Journal of Corrosion and Scale Inhibition, vol. 9, no. 4, p.1390–1401, 2020.

DOI: 10.17675/2305-6894-2020-9-4-12

Google Scholar

[7] M. A. Jafar Mazumder, "A review of green scale inhibitors: Process, types, mechanism and properties," Oct. 01, 2020, MDPI AG.

DOI: 10.3390/coatings10100928

Google Scholar

[8] Y. Tang, W. Yang, X. Yin, Y. Liu, P. Yin, and J. Wang, "Investigation of CaCO3 scale inhibition by PAA, ATMP and PAPEMP," Desalination, vol. 228, no. 1–3, p.55–60, Aug. 2008.

DOI: 10.1016/j.desal.2007.08.006

Google Scholar

[9] A. Khormali, G. Bahlakeh, I. Struchkov, and Y. Kazemzadeh, "Increasing inhibition performance of simultaneous precipitation of calcium and strontium sulfate scales using a new inhibitor — Laboratory and field application," J Pet Sci Eng, vol. 202, Jul. 2021.

DOI: 10.1016/j.petrol.2021.108589

Google Scholar

[10] A. D. Nur Rahmadyo, D. Cahayandari, and S. Rahardjo, "Perbandingan Analisa Kinetika Reaksi Pembentukan Kerak CaCO3-CaSO4 Menggunakan Persamaan Arrhenius Dan Analisa Differensial Scanning Calorimetry (DSC)," p.64–71, 2017.

Google Scholar

[11] K. Anwar, F. Istiqamah, S. H. Program, S. Farmasi, L. Mangkurat, and K. Selatan Indonesia, "Optimasi Suhu dan Waktu Ekstraksi Akar Pasak Bumi (Eurycoma longifolia jack.) Menggunakan Metode RSM (response surface methodology) dengan Pelarut Etanol 70%," 2021. [Online]. Available: https://ppjp.ulm.ac.id/journal/index.php/pharmascience

DOI: 10.20527/jps.v8i1.9085

Google Scholar

[12] H. Nurcahyadi, "Analisis Regresi Pada Data Outlier Dengan Menggunakan Least Trimmed Square (LTS) Dan Mm-Estimasi," 2010.

Google Scholar

[13] M. Munasir, T. Triwikantoro, M. Zainuri, and D. Darminto, "Uji XRD dan XRF pada Bahan Meneral (Batuan dan Pasir) Sebagai Sumber Material Cerdas (CaCO3 dan SiO2)," Jurnal Penelitian Fisika dan Aplikasinya (JPFA), vol. 2, no. 1, p.20, 2012.

DOI: 10.26740/jpfa.v2n1.p20-29

Google Scholar

[14] D. R. , & H. W. M. (Eds. ) Lide, CRC Handbook of Chemistry and Physics, 99th ed. CRC Press, 2018.

Google Scholar

[15] R. Trihaditia, M. Syamsiah, A. Awaliyah, S. T. Mt, S. Pd, and M. Si, "Penentuan Formulasi Optimum Pembuatan Cookies Dari Bekatul Padi Pandanwangi Dengan Penambahan Tepung Terigu Menggunakan Metode RSM (Response Surface Method)," vol. 8, no. 2, 2018.

DOI: 10.35194/agsci.v8i2.494

Google Scholar

[16] Sectlon A and 0 Helene, "Instruments &Mm In Phvsics Research Determination of upper and lower limits combining different experimental results," 1997.

Google Scholar

[17] S. Muryanto et al., "Pengaruh Temperatur Terhadap Pembentukan Kerak Gipsum Dalam Pipa," vol. 16, no. 4, p.2–6, 2012.

DOI: 10.14710/gt.v16i4.4787

Google Scholar

[18] Y. Tang, W. Yang, X. Yin, Y. Liu, P. Yin, and J. Wang, "Investigation of CaCO3 scale inhibition by PAA, ATMP and PAPEMP," Desalination, vol. 228, no. 1–3, p.55–60, 2008.

DOI: 10.1016/j.desal.2007.08.006

Google Scholar

[19] G.A. Fachriansyah and R. Allifyanto, "Pengaruh Inhibitor Magnesium Klorit Dan Kalsium Klorit Dalam Pembentukan Kristal Barium Sulfat," 2022.

Google Scholar

[20] S. Rahardjo, "Pembentukan dan Pengendalian Kerak Mineral di Dalam Pipa," Universitas Muhammadiyah Semarang (Unimus), 2020.

Google Scholar

[21] M. A. Octaviani, D. Retno, S. Dewi, and L. J. Asrini, "Optimasi Faktor Yang Berpengaruh Pada Kualitas Lilin Di Ud.X Dengan Metode Response Surface," Jurnal Ilmiah Widya Teknik, vol. 16, p.29–38, 2017.

Google Scholar

[22] D. Buhani and P. Suharso, Penanggulangan Kerak Edisi II, vol. 4, no. 1. 2015.

Google Scholar

[23] V. Restya, "Analisis Penanggulangan Pertumbuhan Scale Dengan Metode Injeksi Scale Inhibitor Secara Continue Di Surface Facility Pada Lapangan Minyak VR," Tugas Akhir, p.1–10, 2019.

Google Scholar

[24] K. Tanaka, Y. Sakai, Y. Ishii, Y. Yokobayashi, S. Sakaida, and M. Konno, "An experimental study on the conversion of CaO to CaSO4 during diesel particulate lter regeneration," 2023.

DOI: 10.21203/rs.3.rs-2546442/v1

Google Scholar

[25] A. Zeino, M. Albakri, M. Khaled, and M. Zarzour, "Comparative study of the synergistic effect of ATMP and DTPMPA on CaSO4 scale inhibition and evaluation of induction time effect," Journal of Water Process Engineering, vol. 21, p.1–8, Feb. 2018.

DOI: 10.1016/j.jwpe.2017.11.013

Google Scholar

[26] V. Tantayakom, H. S. Fogler, F. F. De Moraes, M. Bualuang, S. Chavadej, and P. Malakul, "Study of Ca-ATMP Precipitation in the Presence of Magnesium Ion," Langmuir, vol. 20, no. 6, p.2220–2226, Mar. 2004.

DOI: 10.1021/la0358318

Google Scholar

[27] N. Huang, Z. bin Xu, W. L. Wang, Q. Wang, Q. Y. Wu, and H. Y. Hu, "Elimination of amino trimethylene phosphonic acid (ATMP) antiscalant in reverse osmosis concentrate using ozone: Anti-precipitation property changes and phosphorus removal," Chemosphere, vol. 291, Mar. 2022.

DOI: 10.1016/j.chemosphere.2021.133027

Google Scholar

[28] T. A. Hoang, H. M. Ang, and A. L. Rohl, "Investigation into the effects of phosphonic inhibitors on the formation of calcium sulfate scales," Desalination Water Treat, vol. 29, no. 1–3, p.294–301, 2011.

DOI: 10.5004/dwt.2011.2188

Google Scholar

[29] M. A. Jafar Mazumder, "A review of green scale inhibitors: Process, types, mechanism and properties," Oct. 01, 2020, MDPI AG.

DOI: 10.3390/coatings10100928

Google Scholar