[1]
S. P. Katikaneni et al., "Catalytic Membrane Reactor for Hydrogen Production from Liquid Petroleum Fuels: Bench Scale Studies," Saudi Aramco Journal of Technology, p.35, 2008.
Google Scholar
[2]
M. Martino, C. Ruocco, E. Meloni, P. Pullumbi, and V. Palma, "Main hydrogen production processes: An overview," Catalysts, vol. 11, no. 5, p.547, 2021.
DOI: 10.3390/catal11050547
Google Scholar
[3]
S. Z. Baykara, "Hydrogen: A brief overview on its sources, production and environmental impact," International Journal of Hydrogen Energy, vol. 43, no. 23, pp.10605-10614, 2018.
DOI: 10.1016/j.ijhydene.2018.02.022
Google Scholar
[4]
G. Cipriani et al., "Perspective on hydrogen energy carrier and its automotive applications," International Journal of Hydrogen Energy, vol. 39, no. 16, pp.8482-8494, 2014.
DOI: 10.1016/j.ijhydene.2014.03.174
Google Scholar
[5]
S. S. Kumar and V. Himabindu, "Hydrogen production by PEM water electrolysis–A review," Materials Science for Energy Technologies, vol. 2, no. 3, pp.442-454, 2019.
DOI: 10.1016/j.mset.2019.03.002
Google Scholar
[6]
T. Yusaf et al., "Sustainable Aviation—Hydrogen Is the Future. Sustainability 2022, 14, 548," ed: s Note: MDPI stays neutral with regard to jurisdictional claims in published …, 2022.
Google Scholar
[7]
V. Spallina et al., "Direct route from ethanol to pure hydrogen through autothermal reforming in a membrane reactor: Experimental demonstration, reactor modelling and design," Energy, vol. 143, pp.666-681, 2018.
DOI: 10.1016/j.energy.2017.11.031
Google Scholar
[8]
N. Pal, M. Agarwal, K. Maheshwari, and Y. S. Solanki, "A review on types, fabrication and support material of hydrogen separation membrane," Materials Today: Proceedings, vol. 28, pp.1386-1391, 2020.
DOI: 10.1016/j.matpr.2020.04.806
Google Scholar
[9]
C. Z. Liang, T.-S. Chung, and J.-Y. Lai, "A review of polymeric composite membranes for gas separation and energy production," Progress in Polymer Science, vol. 97, p.101141, 2019.
DOI: 10.1016/j.progpolymsci.2019.06.001
Google Scholar
[10]
Y. Vijay, S. Wate, N. Acharya, and J. Garg, "The titanium-coated polymeric membranes for hydrogen recovery," International journal of hydrogen energy, vol. 27, no. 9, pp.905-908, 2002.
DOI: 10.1016/s0360-3199(01)00188-4
Google Scholar
[11]
S. K. Gade, P. M. Thoen, and J. D. Way, "Unsupported palladium alloy foil membranes fabricated by electroless plating," Journal of Membrane Science, vol. 316, no. 1-2, pp.112-118, 2008.
DOI: 10.1016/j.memsci.2007.08.022
Google Scholar
[12]
M. Weber et al., "Hydrogen selective palladium-alumina composite membranes prepared by Atomic Layer Deposition," Journal of membrane Science, vol. 596, p.117701, 2020.
DOI: 10.1016/j.memsci.2019.117701
Google Scholar
[13]
D. P. Tanaka, J. Medrano, J. V. Sole, and F. Gallucci, "Metallic membranes for hydrogen separation," in Current trends and future developments on (bio-) membranes: Elsevier, 2020, pp.1-29.
DOI: 10.1016/b978-0-12-818332-8.00001-6
Google Scholar
[14]
L. Roses, G. Manzolini, S. Campanari, E. De Wit, and M. Walter, "Techno-economic assessment of membrane reactor technologies for pure hydrogen production for fuel cell vehicle fleets," Energy & fuels, vol. 27, no. 8, pp.4423-4431, 2013.
DOI: 10.1021/ef301960e
Google Scholar
[15]
S. Paglieri and J. Way, "Innovations in palladium membrane research," Separation and Purification Methods, vol. 31, no. 1, pp.1-169, 2002.
DOI: 10.1081/spm-120006115
Google Scholar
[16]
J. Sanchez and T. T. Tsotsis, "Current developments and future research in catalytic membrane reactors," in Membrane Science and Technology, vol. 4: Elsevier, 1996, pp.529-568.
DOI: 10.1016/s0927-5193(96)80014-3
Google Scholar
[17]
F. Gallucci, L. Paturzo, and A. Basile, "A simulation study of the steam reforming of methane in a dense tubular membrane reactor," International Journal of Hydrogen Energy, vol. 29, no. 6, pp.611-617, 2004.
DOI: 10.1016/j.ijhydene.2003.08.003
Google Scholar
[18]
K. Ghasemzadeh, J. Harasi, T. Amiri, A. Basile, and A. Iulianelli, "Methanol steam reforming for hydrogen generation: A comparative modeling study between silica and Pd-based membrane reactors by CFD method," Fuel Processing Technology, vol. 199, p.106273, 2020.
DOI: 10.1016/j.fuproc.2019.106273
Google Scholar
[19]
M. Saidi, "Application of catalytic membrane reactor for pure hydrogen production by flare gas recovery as a novel approach," International Journal of Hydrogen Energy, vol. 43, no. 31, pp.14834-14847, 2018.
DOI: 10.1016/j.ijhydene.2018.05.156
Google Scholar
[20]
Z. Bian et al., "CFD simulation of a hydrogen-permeable membrane reactor for CO2 reforming of CH4: the interplay of the reaction and hydrogen permeation," Energy & Fuels, vol. 34, no. 10, pp.12366-12378, 2020.
DOI: 10.1021/acs.energyfuels.0c02333
Google Scholar
[21]
J. R. Grace, X. Li, and C. J. Lim, "Equilibrium modelling of catalytic steam reforming of methane in membrane reactors with oxygen addition," Catalysis today, vol. 64, no. 3-4, pp.141-149, 2001.
DOI: 10.1016/s0920-5861(00)00519-8
Google Scholar
[22]
A. Iulianelli et al., "H2 production by low pressure methane steam reforming in a Pd–Ag membrane reactor over a Ni-based catalyst: experimental and modeling," International journal of hydrogen energy, vol. 35, no. 20, pp.11514-11524, 2010.
DOI: 10.1016/j.ijhydene.2010.06.049
Google Scholar
[23]
L. Coronel, J. Múnera, E. A. Lombardo, and L. M. Cornaglia, "Pd based membrane reactor for ultra pure hydrogen production through the dry reforming of methane. Experimental and modeling studies," Applied Catalysis A: General, vol. 400, no. 1-2, pp.185-194, 2011.
DOI: 10.1016/j.apcata.2011.04.030
Google Scholar
[24]
R. Chein, Y. Chen, Y. Chyou, and J. Chung, "Three-dimensional numerical modeling on high pressure membrane reactors for high temperature water-gas shift reaction," International journal of hydrogen energy, vol. 39, no. 28, pp.15517-15529, 2014.
DOI: 10.1016/j.ijhydene.2014.07.113
Google Scholar
[25]
T. Chompupun, S. Limtrakul, T. Vatanatham, C. Kanhari, and P. A. Ramachandran, "Experiments, modeling and scaling-up of membrane reactors for hydrogen production via steam methane reforming," Chemical Engineering and Processing-Process Intensification, vol. 134, pp.124-140, 2018.
DOI: 10.1016/j.cep.2018.10.007
Google Scholar
[26]
B. Lee et al., "CO2 reforming of methane for H2 production in a membrane reactor as CO2 utilization: computational fluid dynamics studies with a reactor geometry," International Journal of Hydrogen Energy, vol. 44, no. 4, pp.2298-2311, 2019.
DOI: 10.1016/j.ijhydene.2018.09.184
Google Scholar
[27]
A. Cifuentes, L. Soler, R. Torres, and J. Llorca, "Methanol steam reforming over PdZn/ZnAl2O4/Al2O3 in a catalytic membrane reactor: An experimental and modelling study," International Journal of Hydrogen Energy, vol. 47, no. 22, pp.11574-11588, 2022.
DOI: 10.1016/j.ijhydene.2022.01.186
Google Scholar
[28]
C. A. Cornaglia, M. E. Adrover, J. F. Múnera, M. N. Pedernera, D. O. Borio, and E. A. Lombardo, "Production of ultrapure hydrogen in a Pd–Ag membrane reactor using noble metals supported on La–Si oxides. Heterogeneous modeling for the water gas shift reaction," International journal of hydrogen energy, vol. 38, no. 25, pp.10485-10493, 2013.
DOI: 10.1016/j.ijhydene.2013.05.043
Google Scholar
[29]
M. De Falco, L. Di Paola, and L. Marrelli, "Heat transfer and hydrogen permeability in modelling industrial membrane reactors for methane steam reforming," International Journal of Hydrogen Energy, vol. 32, no. 14, pp.2902-2913, 2007.
DOI: 10.1016/j.ijhydene.2007.04.014
Google Scholar
[30]
H.-S. Yang and C.-T. Chou, "Non-isothermal simulation of cyclohexane dehydrogenation in an inert membrane reactor with catalytic pellets in the feed-side chamber," Journal of the Chinese Institute of Chemical Engineers, vol. 39, no. 3, pp.227-235, 2008.
DOI: 10.1016/j.jcice.2007.11.011
Google Scholar
[31]
M. Rahimpour and M. Bayat, "Production of ultrapure hydrogen via utilizing fluidization concept from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor," International journal of hydrogen energy, vol. 36, no. 11, pp.6616-6627, 2011.
DOI: 10.1016/j.ijhydene.2011.02.095
Google Scholar
[32]
H. Choi et al., "CFD analysis and scale up of a baffled membrane reactor for hydrogen production by steam methane reforming," Computers & Chemical Engineering, vol. 165, p.107912, 2022.
DOI: 10.1016/j.compchemeng.2022.107912
Google Scholar
[33]
R. Ben-Mansour et al., "Comprehensive parametric investigation of methane reforming and hydrogen separation using a CFD model," Energy Conversion and Management, vol. 249, p.114838, 2021.
DOI: 10.1016/j.enconman.2021.114838
Google Scholar
[34]
M. Upadhyay, H. Lee, A. Kim, S.-h. Lee, and H. Lim, "CFD simulation of methane steam reforming in a membrane reactor: Performance characteristics over range of operating window," International Journal of Hydrogen Energy, vol. 46, no. 59, pp.30402-30411, 2021.
DOI: 10.1016/j.ijhydene.2021.06.178
Google Scholar
[35]
G. Ji, M. Zhao, and G. Wang, "Computational fluid dynamic simulation of a sorption-enhanced palladium membrane reactor for enhancing hydrogen production from methane steam reforming," Energy, vol. 147, pp.884-895, 2018.
DOI: 10.1016/j.energy.2018.01.092
Google Scholar
[36]
H. W. A. El Hawa, S. N. Paglieri, C. C. Morris, A. Harale, and J. D. Way, "Application of a Pd–Ru composite membrane to hydrogen production in a high temperature membrane reactor," Separation and Purification Technology, vol. 147, pp.388-397, 2015.
DOI: 10.1016/j.seppur.2015.02.005
Google Scholar
[37]
K. S. Patel and A. K. Sunol, "Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor," International Journal of Hydrogen Energy, vol. 32, no. 13, pp.2344-2358, 2007.
DOI: 10.1016/j.ijhydene.2007.03.004
Google Scholar
[38]
P. Marín, Y. Patiño, F. V. Díez, and S. Ordóñez, "Modelling of hydrogen perm-selective membrane reactors for catalytic methane steam reforming," International journal of hydrogen energy, vol. 37, no. 23, pp.18433-18445, 2012.
DOI: 10.1016/j.ijhydene.2012.08.147
Google Scholar
[39]
R. Ma, B. Castro-Dominguez, I. P. Mardilovich, A. G. Dixon, and Y. H. Ma, "Experimental and simulation studies of the production of renewable hydrogen through ethanol steam reforming in a large-scale catalytic membrane reactor," Chemical engineering journal, vol. 303, pp.302-313, 2016.
DOI: 10.1016/j.cej.2016.06.021
Google Scholar
[40]
A. Shafiee, M. Arab, Z. Lai, Z. Liu, and A. Abbas, "Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor," international journal of hydrogen energy, vol. 41, no. 42, pp.19081-19097, 2016.
DOI: 10.1016/j.ijhydene.2016.08.172
Google Scholar
[41]
Y.-R. Chen, T. Tsuru, and D.-Y. Kang, "Simulation and design of catalytic membrane reactor for hydrogen production via methylcyclohexane dehydrogenation," International Journal of Hydrogen Energy, vol. 42, no. 42, pp.26296-26307, 2017.
DOI: 10.1016/j.ijhydene.2017.08.174
Google Scholar
[42]
B. M. Cruz and J. D. da Silva, "A two-dimensional mathematical model for the catalytic steam reforming of methane in both conventional fixed-bed and fixed-bed membrane reactors for the Production of hydrogen," International Journal of Hydrogen Energy, vol. 42, no. 37, pp.23670-23690, 2017.
DOI: 10.1016/j.ijhydene.2017.03.019
Google Scholar
[43]
P. Ribeirinha, M. Abdollahzadeh, M. Boaventura, and A. Mendes, "H2 production with low carbon content via MSR in packed bed membrane reactors for high-temperature polymeric electrolyte membrane fuel cell," Applied Energy, vol. 188, pp.409-419, 2017.
DOI: 10.1016/j.apenergy.2016.12.015
Google Scholar
[44]
W. Yu et al., "Simulation of a porous ceramic membrane reactor for hydrogen production," International journal of hydrogen energy, vol. 30, no. 10, pp.1071-1079, 2005.
DOI: 10.1016/j.ijhydene.2004.09.013
Google Scholar
[45]
Y. Benguerba, M. Virginie, C. Dumas, and B. Ernst, "Computational fluid dynamics study of the dry reforming of methane over Ni/Al 2 O 3 catalyst in a membrane reactor. Coke deposition," Kinetics and Catalysis, vol. 58, pp.328-338, 2017.
DOI: 10.1134/s0023158417030028
Google Scholar
[46]
M. S. Macedo, M. Soria, and L. M. Madeira, "Glycerol steam reforming for hydrogen production: Traditional versus membrane reactor," International Journal of Hydrogen Energy, vol. 44, no. 45, pp.24719-24732, 2019.
DOI: 10.1016/j.ijhydene.2019.07.046
Google Scholar
[47]
X. Yang, S. Wang, B. Li, Y. He, and H. Liu, "Performance of ethanol steam reforming in a membrane-assisted packed bed reactor using multiscale modelling," Fuel, vol. 274, p.117829, 2020.
DOI: 10.1016/j.fuel.2020.117829
Google Scholar
[48]
N. Ghasem, "Modeling and simulation of CO2 absorption enhancement in hollow-fiber membrane contactors using CNT–water-based nanofluids," Journal of Membrane Science and Research, vol. 5, no. 4, pp.295-302, 2019.
Google Scholar
[49]
M. Patrascu and M. Sheintuch, "On-site pure hydrogen production by methane steam reforming in high flux membrane reactor: Experimental validation, model predictions and membrane inhibition," Chemical Engineering Journal, vol. 262, pp.862-874, 2015.
DOI: 10.1016/j.cej.2014.10.042
Google Scholar