[1]
Wei, Y.; Parmentier, T. E.; de Jong, K. P.; Zecevic, J., Tailoring and visualizing the pore architecture of hierarchical zeolites. Chem Soc Rev 2015, 44 (20), 7234-61.
DOI: 10.1039/c5cs00155b
Google Scholar
[2]
Usman, Abdulhafiz, et al. "Catalytic cracking of crude oil to light olefins and naphtha: Experimental and kinetic modeling." Chemical engineering research and design 120 (2017): 121-137
DOI: 10.1016/j.cherd.2017.01.027
Google Scholar
[3]
Hashemi R, Nassar NN, Pereira Almao P. Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges. Appl Energy 2014; 133: 374–87.
DOI: 10.1016/j.apenergy.2014.07.069
Google Scholar
[4]
Fumoto E, Tago T, Masuda T. Production of lighter fuels by cracking petroleum residual oils with steam over zirconia-supporting iron oxide catalysts. Energy and Fuels 2006; 20: 1–6.
DOI: 10.1021/ef050105t
Google Scholar
[5]
Box D, Wakeman T, Smith J. The end of cheap oil the consequences. Ecologist 2005; 35: 046.
Google Scholar
[6]
Santos RG, Loh W, Bannwart AC, Trevisan O V. An overview of heavy oil properties and its recovery and transportation methods. Brazilian J Chem Eng 2014; 31: 571–90.
DOI: 10.1590/0104-6632.20140313s00001853
Google Scholar
[7]
Meyer RF, Attanasi ED. Heavy oil and natural bitumen-strategic petroleum resources. United States Geol Surv 2003; 70-03: 1–6.
DOI: 10.3133/fs07003
Google Scholar
[8]
Ibarra, Álvaro, et al. "A hybrid FCC/HZSM-5 catalyst for the catalytic cracking of a VGO/Bio-oil blend in FCC conditions." Catalysts 10.10 (2020): 1157.
DOI: 10.3390/catal10101157
Google Scholar
[9]
Speight J. The Refinery of the Future. Burlington: Elsevier Science: Burlington, 2010.
Google Scholar
[10]
Vermeiren W, Gilson J-P. Impact of Zeolites on the Petroleum and Petrochemical Industry. Top Catal 2009; 52: 1131–61.
DOI: 10.1007/s11244-009-9271-8
Google Scholar
[11]
Robert A. Meyers. Handbook of Petroleum Refining Processes. New York: McGraw- Hill, 2004.
Google Scholar
[12]
García, J.R., Fals, J., Dietta, L.E., & Sedran, U. (2022). VGO from shale oil. FCC processability and co-processing with conventional VGO. Fuel, 328, 125327.
DOI: 10.1016/j.fuel.2022.125327
Google Scholar
[13]
Sonthisawate, T., et al., Catalytic cracking reaction of vacuum gas oil and atmospheric residue by zeolite-containing microporous and mesoporous composites using Curie point pyrolyzer. Fuel Processing Technology, 2016. 142: pp.337-344
DOI: 10.1016/j.fuproc.2015.10.016
Google Scholar
[14]
FLANIGEN EM, KHATAMI H, SZYMANSKI HA. Infrared Structural Studies of Zeolite Frameworks. 1974: 201–29.
DOI: 10.1021/ba-1971-0101.ch016
Google Scholar
[15]
Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 1985; 57: 603–19.
DOI: 10.1351/pac198557040603
Google Scholar
[16]
Husein MM, Alkhaldi SJ. In Situ Preparation of Alumina Nanoparticles in Heavy Oil and Their Thermal Cracking Performance. Energy & Fuels 2014; 28: 6563–9.
DOI: 10.1021/ef5012963
Google Scholar
[17]
Corma A, Martínez C, Sauvanaud L. New materials as FCC active matrix components for maximizing diesel (light cycle oil, LCO) and minimizing its aromatic content. Catal Today 2007; 127: 3–16.
DOI: 10.1016/j.cattod.2007.03.056
Google Scholar
[18]
Li, Kunhao and Valla, Julia and Garcia-Martinez J. Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking. ChemCatChem 2014; 6: 46–66.
DOI: 10.1002/cctc.201300345
Google Scholar
[19]
Zhai S, Zhang Y, Wu D, Sun Y, Wang S. Comparative study on the structural, acidic and catalytic properties of nano-sized and large-particulate mesoporous aluminosilicates. Top Catal 2006; 39: 227–35.
DOI: 10.1007/s11244-006-0061-2
Google Scholar
[20]
Harding R., Peters A., Nee JR. New developments in FCC catalyst technology. Appl Catal
Google Scholar
[21]
Marketing specifications guide of Iraqi petroleum products (2013)
Google Scholar