[1]
United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3. (2022) https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022summary_of_results.pdf. Retrieved on 10th October, 2022.
DOI: 10.18356/27081990-130
Google Scholar
[2]
Worldometers. Life Expectancy of the World Population. (2022) https:// www.worldometers.info/demographics/life-expectancy/. Retrieved on 10th October, 2022.
Google Scholar
[3]
C. A. Guzmán. Complexity in Global Health–Bridging Theory and Practice. Annals of Global Health. 88(1) 2022).
DOI: 10.5334/aogh.3758
Google Scholar
[4]
S. Bhat, A. Kumar. Biomaterials and bioengineering tomorrow's healthcare. Biomatter. 3 (2023) e24717.
DOI: 10.4161/biom.24717
Google Scholar
[5]
E. T. Jiann Chong, J. W. Ng, P.C. Lee. Classification and Medical Applications of Biomaterials–A Mini Review. BIO Integration. Mar 22. (2022).
DOI: 10.15212/bioi-2022-0009
Google Scholar
[6]
K. K. Jaiswal, I. Banerjee, V. P. Mayookha. Recent trends in the development and diversification of sericulture natural products for innovative and sustainable applications. Bioresource Technology Reports. 13 (2021) 100614.
DOI: 10.1016/j.biteb.2020.100614
Google Scholar
[7]
J. Grześkowiak, M. Łochyńska, J. Frankowski. Sericulture in Terms of Sustainable Development in Agriculture. Problemy Ekorozwoju. 17(2) (2022).
DOI: 10.35784/pe.2022.2.23
Google Scholar
[8]
B. Ssemugenze, J. Esimu, J. Nagasha, C. Wandui Masiga. Sericulture: Agro-Based Industry for Sustainable Socio-Economic Development: A Review. International Journal of Scientific and Research Publications. 11 (9) (2021) 474-482. http://dx.doi.org/10.29322/IJSRP.11.09.2021. p.11756.
DOI: 10.29322/ijsrp.11.09.2021.p11756
Google Scholar
[9]
Z. I. Buhroo, M.A. Bhat, M. A. Malik, A. S. Kamili, N. A. Ganai, I. L. Khan. Trends in development and utilization of sericulture resources for diversification and value addition. International Journal of Entomological Research. 6(1) (2021) 27-47.
DOI: 10.33687/entomol.006.01.2069
Google Scholar
[10]
P. Gupta, M. Kumar, N. Bhardwaj, J. P. Kumar, C. S. Krishnamurthy, S. K. Nandi, B. B. Mandal. Mimicking form and function of native small diameter vascular conduits using mulberry and non-mulberry patterned silk films. ACS applied materials & interfaces. 8(25) (2016) 15874-15888.
DOI: 10.1021/acsami.6b00783
Google Scholar
[11]
B. K. Bhunia, B. B. Mandal. Modulation of extracellular matrix by annulus fibrosus cells on tailored silk-based angle-ply intervertebral disc construct. Materials & Design. 158 (2018) 74-87.
DOI: 10.1016/j.matdes.2018.08.015
Google Scholar
[12]
H. Liu, Z. Ge, Y. Wang, S. L. Toh, V. Sutthikhum, J. C. Goh. Modification of sericin‐free silk fibers for ligament tissue engineering application. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 82(1) (2017) 129-138.
DOI: 10.1002/jbm.b.30714
Google Scholar
[13]
D. Chouhan, G. Janani, B. Chakraborty, S. K. Nandi, B. B. Mandal. Functionalized PVA–silk blended nanofibrous mats promote diabetic wound healing via regulation of extracellular matrix and tissue remodeling. Journal of tissue engineering and regenerative medicine. 12(3) (2018) e1559-e1570.
DOI: 10.1002/term.2581
Google Scholar
[14]
P. C. Bessa, E. R. Balmayor, H. S. Azevedo, S. Nürnberger, M. Casal, M. Van Griensven, R. I. Reis, H. Redl. Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release. Journal of tissue engineering and regenerative medicine. 4(5) (2010) 349-355.
DOI: 10.1002/term.245
Google Scholar
[15]
S. Mehrotra, D. Chouhan, R. Konwarh, M. Kumar, P. K. Jadi, B. B. Mandal. Comprehensive review on silk at nanoscale for regenerative medicine and allied applications. ACS Biomaterials Science & Engineering. 5 (5) (2019) 2054-2078.
DOI: 10.1021/acsbiomaterials.8b01560
Google Scholar
[16]
C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, Z. G. Li. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic acids research. 28(12) (2000) 2413-2419.
DOI: 10.1093/nar/28.12.2413
Google Scholar
[17]
G. A. Miguel, C. Álvarez-López. Extraction and antioxidant activity of sericin, a protein from silk. Brazilian Journal of Food Technology. 23 (2020).
DOI: 10.1590/1981-6723.05819
Google Scholar
[18]
F. Seyedaghamiri, F. Farajdokht, S. M. Vatandoust, J. Mahmoudi, A. Khabbaz, S. Sadigh-Eteghad. Sericin modulates learning and memory behaviors by tuning of antioxidant, inflammatory, and apoptotic markers in the hippocampus of aged mice. Molecular Biology Reports. 48(2) (2021) 1371-1382.
DOI: 10.1007/s11033-021-06195-2
Google Scholar
[19]
K. C. Manesa, T. G. Kebede, S. Dube, M. M. Nindi. Profiling of silk sericin from cocoons of three southern African wild silk moths with a focus on their antimicrobial and antioxidant properties. Materials. 13(24) (2020) 5706.
DOI: 10.3390/ma13245706
Google Scholar
[20]
A. Omar, A. Arken, A. Wali, Y. Gao, H. A. Aisa, A. Yili. Effect of phenolic compound-protein covalent conjugation on the physicochemical, anti-inflammatory, and antioxidant activities of silk sericin. Process Biochemistry. 117 (2022) 101-109. https://doi.org/10.1016/j.procbio. 2022.03.008.
DOI: 10.1016/j.procbio.2022.03.008
Google Scholar
[21]
P. Aramwit, N. Luplertlop, T. Kanjanapruthipong, S. Ampawong. Effect of urea-extracted sericin on melanogenesis: potential applications in post-inflammatory hyperpigmentation. Biological Research. 51(1) (2018) 1-3.
DOI: 10.1186/s40659-018-0204-5
Google Scholar
[22]
S. Xu, H. Tan, Q. Yang, R. Wang, C. Tian, Y. Ji, P. Zhao, Q. Xia, F. Wang. Fabrication of a Silk Sericin Hydrogel System Delivering Human Lactoferrin Using Genetically Engineered Silk with Improved Bioavailability to Alleviate Chemotherapy-Induced Immunosuppression. ACS Applied Materials & Interfaces. 13(38) (2021) 45175-45190.
DOI: 10.1021/acsami.1c08409
Google Scholar
[23]
Y. Wang, F. Wang, S. Xu, R. Wang, W. Chen, K. Hou, C. Tian, F. Wang, L. Yu, Z. Lu, P. Zhao. Genetically engineered bi-functional silk material with improved cell proliferation and anti-inflammatory activity for medical application. Acta Biomaterialia. 86 (2019) 148-157.
DOI: 10.1016/j.actbio.2018.12.036
Google Scholar
[24]
G. R. Ko, J. S. Lee. Engineering of immune microenvironment for enhanced tissue remodeling. Tissue Engineering and Regenerative Medicine. (2022) 1-6.
DOI: 10.1007/s13770-021-00419-z
Google Scholar
[25]
E. Bari, S. Perteghella, S. Faragò, M. L. Torre. Association of silk sericin and platelet lysate: Premises for the formulation of wound healing active medications. International journal of biological macromolecules. 119 (2018) 37-47.
DOI: 10.1016/j.ijbiomac.2018.07.142
Google Scholar
[26]
B. O. Boni, L. Lamboni, B. M. Bakadia, S. A. Hussein, G. Yang. Combining silk sericin and surface micropatterns in bacterial cellulose dressings to control fibrosis and enhance wound healing. Engineered Science. 10(8) (2020) 68-77.
DOI: 10.30919/es8d906
Google Scholar
[27]
G. Tao, R. Cai, Y. Wang, L. Liu, H. Zuo, P. Zhao, A. Umar, C. Mao, Q. Xia, H. He. Bioinspired design of AgNPs embedded silk sericin-based sponges for efficiently combating bacteria and promoting wound healing. Materials & Design. 180 (2019) 1079-1140.
DOI: 10.1016/j.matdes.2019.107940
Google Scholar
[28]
S. Baptista-Silva, S. Borges, A. R. Costa-Pinto, R. Costa, M. Amorim, J. R. Dias, O. Ramos, P. Alves, P. L. Granja, R. Soares, M. Pintado. In situ forming silk sericin-based hydrogel: A novel wound healing biomaterial. ACS Biomaterials Science & Engineering. 7(4) (2021) 1573-86.
DOI: 10.1021/acsbiomaterials.0c01745
Google Scholar
[29]
G. Das, H. S. Shin, E. V. Campos, L. F. Fraceto, M. del Pilar Rodriguez-Torres, K. C. Mariano, D. R. de Araujo, F. Fernández-Luqueño F, Grillo R, Patra JK. Sericin based nanoformulations: a comprehensive review on molecular mechanisms of interaction with organisms to biological applications. Journal of Nanobiotechnology. 19(1) (2021) 1-22.
DOI: 10.1186/s12951-021-00774-y
Google Scholar
[30]
L. Deng, W. Guo, G. Li, Y. Hu, L. M. Zhang. Hydrophobic IR780 loaded sericin nanomicelles for phototherapy with enhanced antitumor efficiency. International journal of pharmaceutics. 566 (2019) 549-556.
DOI: 10.1016/j.ijpharm.2019.05.075
Google Scholar
[31]
W. Guo, L. Deng, J. Yu, Z. Chen, Y. Woo, H. Liu, T. Li, T. Lin, H. Chen, M. Zhao, L. Zhang. Sericin nanomicelles with enhanced cellular uptake and pH-triggered release of doxorubicin reverse cancer drug resistance. Drug delivery. 25(1) (2018) 1103-1116.
DOI: 10.1080/10717544.2018.1469686
Google Scholar
[32]
M. Elahi, S. Ali, H. M. Tahir, R. Mushtaq, M. F. Bhatti. Sericin and fibroin nanoparticles—natural product for cancer therapy: a comprehensive review. International Journal of Polymeric Materials and Polymeric Biomaterials. 70(4) (2021) 256-269.
DOI: 10.1080/00914037.2019.1706515
Google Scholar
[33]
R. Suryawanshi, J. Kanoujia, P. Parashar, S. Saraf. Sericin: a versatile protein biopolymer with therapeutic significance. Current Pharmaceutical Design. 26(42) (2020) 5414-5429.
DOI: 10.2174/1381612826666200612165253
Google Scholar
[34]
G. Ma, X. Chai, G. Hou, F. Zhao, Q. Meng. Phytochemistry, bioactivities and future prospects of mulberry leaves: A review. Food Chemistry. 372 (2022) 131335.
DOI: 10.1016/j.foodchem.2021.131335
Google Scholar
[35]
Q. U. Le, H. L. Lay, M. C. Wu. Herbs for the Management of Diabetes Mellitus in Traditional Vietnamese Medicine. Journal of Applied Biopharmaceutics and Pharmacokinetics. 7 (2019) 1-7.
Google Scholar
[36]
J. Zhang, M. Liu, B. Hu, L. Wang. Exercise Combined with a Chinese Medicine Herbal Tea for Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Journal of Integrative and Complementary Medicine. (2022).
DOI: 10.1089/jicm.2022.0580
Google Scholar
[37]
K. Takama, T. Yamamoto, C. Mori, S. Ogoshi, Y. Ogoshi. Development of herbal tea formulation system tailored to the individual characteristics. In2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan). IEEE. (2020) 1-2.
DOI: 10.1109/ICCE-Taiwan49838.2020.9258006
Google Scholar
[38]
Y. C. Lin, C. J. Wu, P. C. Kuo, W. Y. Chen, J. T. Tzen. Quercetin 3‐O‐malonylglucoside in the leaves of mulberry (Morus alba) is a functional analog of ghrelin. Journal of Food Biochemistry. 44(9) (2020) e13379.
DOI: 10.1111/jfbc.13379
Google Scholar
[39]
H. Zhang, Z. F. Ma, X. Luo, X. Li. Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: A mini-review. Antioxidants. 7(5) (2018) 69. https://doi.org/10.3390/antiox 7050069.
DOI: 10.3390/antiox7050069
Google Scholar
[40]
A. Mandal. Nutraceutical and medicinal property of mulberry fruits: a review on its pharmacological potential. (2020) 2020040105. https://doi.org/10.20944/preprints202004. 0105.v1.
DOI: 10.20944/preprints202004.0105.v1
Google Scholar
[41]
D. K. Yang, D. G. Jo. Mulberry fruit extract ameliorates nonalcoholic fatty liver disease (NAFLD) through inhibition of mitochondrial oxidative stress in rats. Evidence-Based Complementary and Alternative Medicine. (2018) 2018.
DOI: 10.1155/2018/8165716
Google Scholar
[42]
M. S. Lee, Y. Kim. Mulberry fruit extract ameliorates adipogenesis via increasing AMPK activity and downregulating microRNA-21/143 in 3T3-L1 adipocytes. Journal of medicinal food. 23(3) (2020) 266-272.
DOI: 10.1089/jmf.2019.4654
Google Scholar
[43]
D. L. Aulifa, S. Haque, H. Riasari, A. Budiman. Antibacterial effects of black mulberry (Morus nigra) stem bark extract on Streptococcus mutans. Research Journal of Pharmacy and Technology. 14(8) (2021) 4399-4402.
DOI: 10.52711/0974-360X.2021.00763
Google Scholar
[44]
A. Burhan, A. Awaluddin, B. T. Zulham, A. Gafur. Antioxidant and anticancer activities of murbei (Morus alba L.) stem extract on in vitro widr cancer cells. Jurnal Farmasi Sains dan Komunitas. 16(2) (2019) 63-67.
DOI: 10.24071/jpsc.001698
Google Scholar
[45]
J. Im, J. Hyun, S. W. Kim, S. H. Bhang. Enhancing the Angiogenic and Proliferative Capacity of Dermal Fibroblasts with Mulberry (Morus alba. L) Root Extract. Tissue Engineering and Regenerative Medicine. 19(1) (2022) 49-57.
DOI: 10.1007/s13770-021-00404-6
Google Scholar
[46]
C. Yang, S. Shang, D. Shou, G. Lan, F. Dai, E. Hu, K. Yu. Antibiotics-free wound dressing combating bacterial infections: A clean method using silkworm cocoon shell for preparation. Materials Chemistry and Physics. 277 (2022) 125484.
DOI: 10.1016/j.matchemphys.2021.125484
Google Scholar
[47]
C. Hirayama, H. Ono, Y. Tamura, M. Nakamura. C-prolinylquercetins from the yellow cocoon shell of the silkworm, Bombyx mori. Phytochemistry. 67(6) (2006) 579-83.
DOI: 10.1016/j.phytochem.2005.11.030
Google Scholar
[48]
K. Jantakee, P. Prangkio, A. Panya, Y. Tragoolpua. Anti-Herpes Simplex Virus Efficacy of Silk Cocoon, Silkworm Pupa and Non-Sericin Extracts. Antibiotics. 10(12) (2016) 1553.
DOI: 10.3390/antibiotics10121553
Google Scholar
[49]
A. Sadat, T. Biswas, M. H. Cardoso, R. Mondal, A. Ghosh, P. Dam, J. Nesa, J. Chakraborty, D. Bhattacharjya, O. L. Franco, D. Gangopadhyay. Silkworm pupae as a future food with nutritional and medicinal benefits. Current Opinion in Food Science. 44 (2022) 100818.
DOI: 10.1016/j.cofs.2022.100818
Google Scholar
[50]
M. Khorenko, U. Rand, L. Cicin-Sain, C. Feldmann. Foscarnet-Type Inorganic-Organic Hybrid Nanoparticles for Effective Antiviral Therapy. ACS Biomaterials Science & Engineering. 8(4) (2022)1596-1603.
DOI: 10.1021/acsbiomaterials.2c00074
Google Scholar
[51]
M. Janeta, M. Rajczakowska, J. Ejfler, D. Łydżba, S. Szafert. Synthesis and microstructural properties of the scaffold based on a 3-(trimethoxysilyl) propyl methacrylate–POSS hybrid towards potential tissue engineering applications. RSC advances. 6(70) (2016) 66037-66047.
DOI: 10.1039/C6RA10364B
Google Scholar
[52]
X. Qiang, X. Ma, Z. Li, X. Hou. Synthesis of star-shaped polyhedral oligomeric silsesquioxane (POSS) fluorinated acrylates for hydrophobic honeycomb porous film application. Colloid and Polymer Science. 292(7) (2014) 1531-1544.
DOI: 10.1007/s00396-013-3157-9
Google Scholar
[53]
W. Fan, L. R. Jensen, M. Ceccato, T. S. Quaade, L. Gurevich, D. Yu, M. M. Smedskjaer. Flexible inorganic–organic hybrids with dual inorganic components. Materials Today Chemistry. 22 (2021) 100584.
DOI: 10.1016/j.mtchem.2021.100584
Google Scholar
[54]
A. S. Abdraboh, A. A. Abdel-Aal, K. T. Ereiba. Preparation and characterization of inorganic organic hybrid material based on TEOS/MAPTMS for biomedical applications. Silicon. 13(2) (2021) 613-622.
DOI: 10.1007/s12633-020-00460-y
Google Scholar
[55]
A. Zima. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 193 (2018) 175-84.
DOI: 10.1016/j.saa.2017.12.008
Google Scholar
[56]
J. J. Chung, J. Yoo, B. S. Sum, S. Li, S. Lee, T. H. Kim, Z. Li, M. M. Stevens, T. K. Georgiou, Y. Jung, J. R. Jones. 3D printed porous methacrylate/silica hybrid scaffold for bone substitution. Advanced Healthcare Materials. 10(12) (2021) 2100117. https://doi.org/10.1002/adhm. 202100117.
DOI: 10.1002/adhm.202100117
Google Scholar
[57]
M. Mukai, M. Takahara, A. Takada, A. Takahara. Preparation of an (inorganic/organic) hybrid hydrogel from a peptide oligomer and a tubular aluminosilicate nanofiber. RSC advances. 11(9) (2021) 4901-4905.
DOI: 10.1039/D0RA09514A
Google Scholar
[58]
Y. Vueva, L.S. Connell, S. Chayanun, D. Wang, D. S. McPhail, F. Romer, J. V. Hanna, J. R. Jones. Silica/alginate hybrid biomaterials and assessment of their covalent coupling. Applied Materials Today. 11 (2018) 1-2.
DOI: 10.1016/j.apmt.2017.12.011
Google Scholar
[59]
K. Sudhakar, S. J. Moloi, K. M. Rao. Green Synthesis and Characterization of Halloysite Nanoclay/Curcumin/Ag Hybrid Nano Materials for Antibacterial Applications. J Inorg Organomet Polym. 27 (2017) 1450–1456.
DOI: 10.1007/s10904-017-0600-2
Google Scholar
[60]
K. M. Rao, A. Kumar, M. Suneetha, S. S. Han. pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery. International journal of biological macromolecules. 112 (2018) 119-125.
DOI: 10.1016/j.ijbiomac.2018.01.163
Google Scholar
[61]
M. Du, M. Peng, B. Mai, F. Hu, X. Zhang, Y. Chen, C. Wang. A multifunctional hybrid inorganic-organic coating fabricated on magnesium alloy surface with antiplatelet adhesion and antibacterial activities. Surface and Coatings Technology. 384 (2020) 125336.
DOI: 10.1016/j.surfcoat.2020.125336
Google Scholar
[62]
N. Aslankoohi, D. Mondal, A. S. Rizkalla, K. Mequanint. Bone repair and regenerative biomaterials: towards recapitulating the microenvironment. Polymers. 11(9) (2019) 1437.
DOI: 10.3390/polym11091437
Google Scholar
[63]
J. R. Jones. Review of bioactive glass: from Hench to hybrids. Acta biomaterialia. 9(1) (2013) 4457-4486.
DOI: 10.1016/j.actbio.2012.08.023
Google Scholar