Strategy for Developing Medical Inorganic-Organic Hybrid Biomaterials through the Improvement of Sericulture as a Producer of Renewable Active Biological Raw Materials

Article Preview

Abstract:

The need for biomaterials is increasing as more and more health problems become more and more complex. Progress in the field of medical biomaterials is also accelerating, but the provision of renewable biomaterials continues to be of concern to the world as awareness of sustainable development in the field of chemistry and health. Various strategies in the development of medical biomaterials were studied through a narrative review of the literature. One of them is the strategy of developing inorganic-organic hybrid medical biomaterials through the cultivation of silkworms as producers of renewable biomaterial raw materials. Sericulture can produce active biomaterials such as sericin, fibroin and other renewable materials and those biomaterials can be combined with inorganic nanoparticles to produce medical functional biomaterials on an ongoing basis. The addition of antibacterial bioactive materials such as natural dyestuffs and inorganic nanoparticles of anti-bacterial agents can increase the productivity and quality of antimicrobial biomaterials produced by the cultivation of silkworms.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 14)

Pages:

95-106

Citation:

Online since:

January 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3. (2022) https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022summary_of_results.pdf. Retrieved on 10th October, 2022.

DOI: 10.18356/27081990-130

Google Scholar

[2] Worldometers. Life Expectancy of the World Population. (2022) https:// www.worldometers.info/demographics/life-expectancy/. Retrieved on 10th October, 2022.

Google Scholar

[3] C. A. Guzmán. Complexity in Global Health–Bridging Theory and Practice. Annals of Global Health. 88(1) 2022).

DOI: 10.5334/aogh.3758

Google Scholar

[4] S. Bhat, A. Kumar. Biomaterials and bioengineering tomorrow's healthcare. Biomatter. 3 (2023) e24717.

DOI: 10.4161/biom.24717

Google Scholar

[5] E. T. Jiann Chong, J. W. Ng, P.C. Lee. Classification and Medical Applications of Biomaterials–A Mini Review. BIO Integration. Mar 22. (2022).

DOI: 10.15212/bioi-2022-0009

Google Scholar

[6] K. K. Jaiswal, I. Banerjee, V. P. Mayookha. Recent trends in the development and diversification of sericulture natural products for innovative and sustainable applications. Bioresource Technology Reports. 13 (2021) 100614.

DOI: 10.1016/j.biteb.2020.100614

Google Scholar

[7] J. Grześkowiak, M. Łochyńska, J. Frankowski. Sericulture in Terms of Sustainable Development in Agriculture. Problemy Ekorozwoju. 17(2) (2022).

DOI: 10.35784/pe.2022.2.23

Google Scholar

[8] B. Ssemugenze, J. Esimu, J. Nagasha, C. Wandui Masiga. Sericulture: Agro-Based Industry for Sustainable Socio-Economic Development: A Review. International Journal of Scientific and Research Publications. 11 (9) (2021) 474-482. http://dx.doi.org/10.29322/IJSRP.11.09.2021. p.11756.

DOI: 10.29322/ijsrp.11.09.2021.p11756

Google Scholar

[9] Z. I. Buhroo, M.A. Bhat, M. A. Malik, A. S. Kamili, N. A. Ganai, I. L. Khan. Trends in development and utilization of sericulture resources for diversification and value addition. International Journal of Entomological Research. 6(1) (2021) 27-47.

DOI: 10.33687/entomol.006.01.2069

Google Scholar

[10] P. Gupta, M. Kumar, N. Bhardwaj, J. P. Kumar, C. S. Krishnamurthy, S. K. Nandi, B. B. Mandal. Mimicking form and function of native small diameter vascular conduits using mulberry and non-mulberry patterned silk films. ACS applied materials & interfaces. 8(25) (2016) 15874-15888.

DOI: 10.1021/acsami.6b00783

Google Scholar

[11] B. K. Bhunia, B. B. Mandal. Modulation of extracellular matrix by annulus fibrosus cells on tailored silk-based angle-ply intervertebral disc construct. Materials & Design. 158 (2018) 74-87.

DOI: 10.1016/j.matdes.2018.08.015

Google Scholar

[12] H. Liu, Z. Ge, Y. Wang, S. L. Toh, V. Sutthikhum, J. C. Goh. Modification of sericin‐free silk fibers for ligament tissue engineering application. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 82(1) (2017) 129-138.

DOI: 10.1002/jbm.b.30714

Google Scholar

[13] D. Chouhan, G. Janani, B. Chakraborty, S. K. Nandi, B. B. Mandal. Functionalized PVA–silk blended nanofibrous mats promote diabetic wound healing via regulation of extracellular matrix and tissue remodeling. Journal of tissue engineering and regenerative medicine. 12(3) (2018) e1559-e1570.

DOI: 10.1002/term.2581

Google Scholar

[14] P. C. Bessa, E. R. Balmayor, H. S. Azevedo, S. Nürnberger, M. Casal, M. Van Griensven, R. I. Reis, H. Redl. Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release. Journal of tissue engineering and regenerative medicine. 4(5) (2010) 349-355.

DOI: 10.1002/term.245

Google Scholar

[15] S. Mehrotra, D. Chouhan, R. Konwarh, M. Kumar, P. K. Jadi, B. B. Mandal. Comprehensive review on silk at nanoscale for regenerative medicine and allied applications. ACS Biomaterials Science & Engineering. 5 (5) (2019) 2054-2078.

DOI: 10.1021/acsbiomaterials.8b01560

Google Scholar

[16] C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, Z. G. Li. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic acids research. 28(12) (2000) 2413-2419.

DOI: 10.1093/nar/28.12.2413

Google Scholar

[17] G. A. Miguel, C. Álvarez-López. Extraction and antioxidant activity of sericin, a protein from silk. Brazilian Journal of Food Technology. 23 (2020).

DOI: 10.1590/1981-6723.05819

Google Scholar

[18] F. Seyedaghamiri, F. Farajdokht, S. M. Vatandoust, J. Mahmoudi, A. Khabbaz, S. Sadigh-Eteghad. Sericin modulates learning and memory behaviors by tuning of antioxidant, inflammatory, and apoptotic markers in the hippocampus of aged mice. Molecular Biology Reports. 48(2) (2021) 1371-1382.

DOI: 10.1007/s11033-021-06195-2

Google Scholar

[19] K. C. Manesa, T. G. Kebede, S. Dube, M. M. Nindi. Profiling of silk sericin from cocoons of three southern African wild silk moths with a focus on their antimicrobial and antioxidant properties. Materials. 13(24) (2020) 5706.

DOI: 10.3390/ma13245706

Google Scholar

[20] A. Omar, A. Arken, A. Wali, Y. Gao, H. A. Aisa, A. Yili. Effect of phenolic compound-protein covalent conjugation on the physicochemical, anti-inflammatory, and antioxidant activities of silk sericin. Process Biochemistry. 117 (2022) 101-109. https://doi.org/10.1016/j.procbio. 2022.03.008.

DOI: 10.1016/j.procbio.2022.03.008

Google Scholar

[21] P. Aramwit, N. Luplertlop, T. Kanjanapruthipong, S. Ampawong. Effect of urea-extracted sericin on melanogenesis: potential applications in post-inflammatory hyperpigmentation. Biological Research. 51(1) (2018) 1-3.

DOI: 10.1186/s40659-018-0204-5

Google Scholar

[22] S. Xu, H. Tan, Q. Yang, R. Wang, C. Tian, Y. Ji, P. Zhao, Q. Xia, F. Wang. Fabrication of a Silk Sericin Hydrogel System Delivering Human Lactoferrin Using Genetically Engineered Silk with Improved Bioavailability to Alleviate Chemotherapy-Induced Immunosuppression. ACS Applied Materials & Interfaces. 13(38) (2021) 45175-45190.

DOI: 10.1021/acsami.1c08409

Google Scholar

[23] Y. Wang, F. Wang, S. Xu, R. Wang, W. Chen, K. Hou, C. Tian, F. Wang, L. Yu, Z. Lu, P. Zhao. Genetically engineered bi-functional silk material with improved cell proliferation and anti-inflammatory activity for medical application. Acta Biomaterialia. 86 (2019) 148-157.

DOI: 10.1016/j.actbio.2018.12.036

Google Scholar

[24] G. R. Ko, J. S. Lee. Engineering of immune microenvironment for enhanced tissue remodeling. Tissue Engineering and Regenerative Medicine. (2022) 1-6.

DOI: 10.1007/s13770-021-00419-z

Google Scholar

[25] E. Bari, S. Perteghella, S. Faragò, M. L. Torre. Association of silk sericin and platelet lysate: Premises for the formulation of wound healing active medications. International journal of biological macromolecules. 119 (2018) 37-47.

DOI: 10.1016/j.ijbiomac.2018.07.142

Google Scholar

[26] B. O. Boni, L. Lamboni, B. M. Bakadia, S. A. Hussein, G. Yang. Combining silk sericin and surface micropatterns in bacterial cellulose dressings to control fibrosis and enhance wound healing. Engineered Science. 10(8) (2020) 68-77.

DOI: 10.30919/es8d906

Google Scholar

[27] G. Tao, R. Cai, Y. Wang, L. Liu, H. Zuo, P. Zhao, A. Umar, C. Mao, Q. Xia, H. He. Bioinspired design of AgNPs embedded silk sericin-based sponges for efficiently combating bacteria and promoting wound healing. Materials & Design. 180 (2019) 1079-1140.

DOI: 10.1016/j.matdes.2019.107940

Google Scholar

[28] S. Baptista-Silva, S. Borges, A. R. Costa-Pinto, R. Costa, M. Amorim, J. R. Dias, O. Ramos, P. Alves, P. L. Granja, R. Soares, M. Pintado. In situ forming silk sericin-based hydrogel: A novel wound healing biomaterial. ACS Biomaterials Science & Engineering. 7(4) (2021) 1573-86.

DOI: 10.1021/acsbiomaterials.0c01745

Google Scholar

[29] G. Das, H. S. Shin, E. V. Campos, L. F. Fraceto, M. del Pilar Rodriguez-Torres, K. C. Mariano, D. R. de Araujo, F. Fernández-Luqueño F, Grillo R, Patra JK. Sericin based nanoformulations: a comprehensive review on molecular mechanisms of interaction with organisms to biological applications. Journal of Nanobiotechnology. 19(1) (2021) 1-22.

DOI: 10.1186/s12951-021-00774-y

Google Scholar

[30] L. Deng, W. Guo, G. Li, Y. Hu, L. M. Zhang. Hydrophobic IR780 loaded sericin nanomicelles for phototherapy with enhanced antitumor efficiency. International journal of pharmaceutics. 566 (2019) 549-556.

DOI: 10.1016/j.ijpharm.2019.05.075

Google Scholar

[31] W. Guo, L. Deng, J. Yu, Z. Chen, Y. Woo, H. Liu, T. Li, T. Lin, H. Chen, M. Zhao, L. Zhang. Sericin nanomicelles with enhanced cellular uptake and pH-triggered release of doxorubicin reverse cancer drug resistance. Drug delivery. 25(1) (2018) 1103-1116.

DOI: 10.1080/10717544.2018.1469686

Google Scholar

[32] M. Elahi, S. Ali, H. M. Tahir, R. Mushtaq, M. F. Bhatti. Sericin and fibroin nanoparticles—natural product for cancer therapy: a comprehensive review. International Journal of Polymeric Materials and Polymeric Biomaterials. 70(4) (2021) 256-269.

DOI: 10.1080/00914037.2019.1706515

Google Scholar

[33] R. Suryawanshi, J. Kanoujia, P. Parashar, S. Saraf. Sericin: a versatile protein biopolymer with therapeutic significance. Current Pharmaceutical Design. 26(42) (2020) 5414-5429.

DOI: 10.2174/1381612826666200612165253

Google Scholar

[34] G. Ma, X. Chai, G. Hou, F. Zhao, Q. Meng. Phytochemistry, bioactivities and future prospects of mulberry leaves: A review. Food Chemistry. 372 (2022) 131335.

DOI: 10.1016/j.foodchem.2021.131335

Google Scholar

[35] Q. U. Le, H. L. Lay, M. C. Wu. Herbs for the Management of Diabetes Mellitus in Traditional Vietnamese Medicine. Journal of Applied Biopharmaceutics and Pharmacokinetics. 7 (2019) 1-7.

Google Scholar

[36] J. Zhang, M. Liu, B. Hu, L. Wang. Exercise Combined with a Chinese Medicine Herbal Tea for Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Journal of Integrative and Complementary Medicine. (2022).

DOI: 10.1089/jicm.2022.0580

Google Scholar

[37] K. Takama, T. Yamamoto, C. Mori, S. Ogoshi, Y. Ogoshi. Development of herbal tea formulation system tailored to the individual characteristics. In2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan). IEEE. (2020) 1-2.

DOI: 10.1109/ICCE-Taiwan49838.2020.9258006

Google Scholar

[38] Y. C. Lin, C. J. Wu, P. C. Kuo, W. Y. Chen, J. T. Tzen. Quercetin 3‐O‐malonylglucoside in the leaves of mulberry (Morus alba) is a functional analog of ghrelin. Journal of Food Biochemistry. 44(9) (2020) e13379.

DOI: 10.1111/jfbc.13379

Google Scholar

[39] H. Zhang, Z. F. Ma, X. Luo, X. Li. Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: A mini-review. Antioxidants. 7(5) (2018) 69. https://doi.org/10.3390/antiox 7050069.

DOI: 10.3390/antiox7050069

Google Scholar

[40] A. Mandal. Nutraceutical and medicinal property of mulberry fruits: a review on its pharmacological potential. (2020) 2020040105. https://doi.org/10.20944/preprints202004. 0105.v1.

DOI: 10.20944/preprints202004.0105.v1

Google Scholar

[41] D. K. Yang, D. G. Jo. Mulberry fruit extract ameliorates nonalcoholic fatty liver disease (NAFLD) through inhibition of mitochondrial oxidative stress in rats. Evidence-Based Complementary and Alternative Medicine. (2018) 2018.

DOI: 10.1155/2018/8165716

Google Scholar

[42] M. S. Lee, Y. Kim. Mulberry fruit extract ameliorates adipogenesis via increasing AMPK activity and downregulating microRNA-21/143 in 3T3-L1 adipocytes. Journal of medicinal food. 23(3) (2020) 266-272.

DOI: 10.1089/jmf.2019.4654

Google Scholar

[43] D. L. Aulifa, S. Haque, H. Riasari, A. Budiman. Antibacterial effects of black mulberry (Morus nigra) stem bark extract on Streptococcus mutans. Research Journal of Pharmacy and Technology. 14(8) (2021) 4399-4402.

DOI: 10.52711/0974-360X.2021.00763

Google Scholar

[44] A. Burhan, A. Awaluddin, B. T. Zulham, A. Gafur. Antioxidant and anticancer activities of murbei (Morus alba L.) stem extract on in vitro widr cancer cells. Jurnal Farmasi Sains dan Komunitas. 16(2) (2019) 63-67.

DOI: 10.24071/jpsc.001698

Google Scholar

[45] J. Im, J. Hyun, S. W. Kim, S. H. Bhang. Enhancing the Angiogenic and Proliferative Capacity of Dermal Fibroblasts with Mulberry (Morus alba. L) Root Extract. Tissue Engineering and Regenerative Medicine. 19(1) (2022) 49-57.

DOI: 10.1007/s13770-021-00404-6

Google Scholar

[46] C. Yang, S. Shang, D. Shou, G. Lan, F. Dai, E. Hu, K. Yu. Antibiotics-free wound dressing combating bacterial infections: A clean method using silkworm cocoon shell for preparation. Materials Chemistry and Physics. 277 (2022) 125484.

DOI: 10.1016/j.matchemphys.2021.125484

Google Scholar

[47] C. Hirayama, H. Ono, Y. Tamura, M. Nakamura. C-prolinylquercetins from the yellow cocoon shell of the silkworm, Bombyx mori. Phytochemistry. 67(6) (2006) 579-83.

DOI: 10.1016/j.phytochem.2005.11.030

Google Scholar

[48] K. Jantakee, P. Prangkio, A. Panya, Y. Tragoolpua. Anti-Herpes Simplex Virus Efficacy of Silk Cocoon, Silkworm Pupa and Non-Sericin Extracts. Antibiotics. 10(12) (2016) 1553.

DOI: 10.3390/antibiotics10121553

Google Scholar

[49] A. Sadat, T. Biswas, M. H. Cardoso, R. Mondal, A. Ghosh, P. Dam, J. Nesa, J. Chakraborty, D. Bhattacharjya, O. L. Franco, D. Gangopadhyay. Silkworm pupae as a future food with nutritional and medicinal benefits. Current Opinion in Food Science. 44 (2022) 100818.

DOI: 10.1016/j.cofs.2022.100818

Google Scholar

[50] M. Khorenko, U. Rand, L. Cicin-Sain, C. Feldmann. Foscarnet-Type Inorganic-Organic Hybrid Nanoparticles for Effective Antiviral Therapy. ACS Biomaterials Science & Engineering. 8(4) (2022)1596-1603.

DOI: 10.1021/acsbiomaterials.2c00074

Google Scholar

[51] M. Janeta, M. Rajczakowska, J. Ejfler, D. Łydżba, S. Szafert. Synthesis and microstructural properties of the scaffold based on a 3-(trimethoxysilyl) propyl methacrylate–POSS hybrid towards potential tissue engineering applications. RSC advances. 6(70) (2016) 66037-66047.

DOI: 10.1039/C6RA10364B

Google Scholar

[52] X. Qiang, X. Ma, Z. Li, X. Hou. Synthesis of star-shaped polyhedral oligomeric silsesquioxane (POSS) fluorinated acrylates for hydrophobic honeycomb porous film application. Colloid and Polymer Science. 292(7) (2014) 1531-1544.

DOI: 10.1007/s00396-013-3157-9

Google Scholar

[53] W. Fan, L. R. Jensen, M. Ceccato, T. S. Quaade, L. Gurevich, D. Yu, M. M. Smedskjaer. Flexible inorganic–organic hybrids with dual inorganic components. Materials Today Chemistry. 22 (2021) 100584.

DOI: 10.1016/j.mtchem.2021.100584

Google Scholar

[54] A. S. Abdraboh, A. A. Abdel-Aal, K. T. Ereiba. Preparation and characterization of inorganic organic hybrid material based on TEOS/MAPTMS for biomedical applications. Silicon. 13(2) (2021) 613-622.

DOI: 10.1007/s12633-020-00460-y

Google Scholar

[55] A. Zima. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 193 (2018) 175-84.

DOI: 10.1016/j.saa.2017.12.008

Google Scholar

[56] J. J. Chung, J. Yoo, B. S. Sum, S. Li, S. Lee, T. H. Kim, Z. Li, M. M. Stevens, T. K. Georgiou, Y. Jung, J. R. Jones. 3D printed porous methacrylate/silica hybrid scaffold for bone substitution. Advanced Healthcare Materials. 10(12) (2021) 2100117. https://doi.org/10.1002/adhm. 202100117.

DOI: 10.1002/adhm.202100117

Google Scholar

[57] M. Mukai, M. Takahara, A. Takada, A. Takahara. Preparation of an (inorganic/organic) hybrid hydrogel from a peptide oligomer and a tubular aluminosilicate nanofiber. RSC advances. 11(9) (2021) 4901-4905.

DOI: 10.1039/D0RA09514A

Google Scholar

[58] Y. Vueva, L.S. Connell, S. Chayanun, D. Wang, D. S. McPhail, F. Romer, J. V. Hanna, J. R. Jones. Silica/alginate hybrid biomaterials and assessment of their covalent coupling. Applied Materials Today. 11 (2018) 1-2.

DOI: 10.1016/j.apmt.2017.12.011

Google Scholar

[59] K. Sudhakar, S. J. Moloi, K. M. Rao. Green Synthesis and Characterization of Halloysite Nanoclay/Curcumin/Ag Hybrid Nano Materials for Antibacterial Applications. J Inorg Organomet Polym. 27 (2017) 1450–1456.

DOI: 10.1007/s10904-017-0600-2

Google Scholar

[60] K. M. Rao, A. Kumar, M. Suneetha, S. S. Han. pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery. International journal of biological macromolecules. 112 (2018) 119-125.

DOI: 10.1016/j.ijbiomac.2018.01.163

Google Scholar

[61] M. Du, M. Peng, B. Mai, F. Hu, X. Zhang, Y. Chen, C. Wang. A multifunctional hybrid inorganic-organic coating fabricated on magnesium alloy surface with antiplatelet adhesion and antibacterial activities. Surface and Coatings Technology. 384 (2020) 125336.

DOI: 10.1016/j.surfcoat.2020.125336

Google Scholar

[62] N. Aslankoohi, D. Mondal, A. S. Rizkalla, K. Mequanint. Bone repair and regenerative biomaterials: towards recapitulating the microenvironment. Polymers. 11(9) (2019) 1437.

DOI: 10.3390/polym11091437

Google Scholar

[63] J. R. Jones. Review of bioactive glass: from Hench to hybrids. Acta biomaterialia. 9(1) (2013) 4457-4486.

DOI: 10.1016/j.actbio.2012.08.023

Google Scholar