Analysis of the Dislocation Structure, Kinetics and Dynamics in the High-Entropy Alloy Al0.5CoCrCuFeNi

Article Preview

Abstract:

A theoretical analysis of low-temperature plastic deformation processes and acoustic relaxation in the high-entropy alloy Al0.5CoCrCuFeNi has been conducted. Within the framework of proposed dislocation model it was established the key types of dislocation defects in the alloy's lattice structure; types of barriers that hinder the movement of dislocation lines (strings); and mechanisms of thermally activated movement of various dislocation line elements through these barriers at room and low temperatures. Using this model, quantitative estimates have been derived for significant dislocation characteristics and their interaction with barriers, such as the distance between local obstacles in the slip plane ∼ 4 nm, the Peierls stress for dislocations in an easy slip system 4 · 106 Pa, and more. Additionally, an estimated speed of sound 3.4 · 103 m/s based on the proposed model aligns well with the direct experimental data. The empirical estimates for the energy per unit length of a dislocation ∼ 10-8 J/m and the linear mass density ∼ 10-15 kg/m are consistent with modern continuum dislocation theory. A detailed examination of the structure of the alloy Al0.5CoCrCuFeNi was carried out using X-ray diffraction and Energy Dispersive Spectroscopy techniques. Numerical estimates of the dislocation density ∼ 5 · 1015m-2 were obtained through Williamson-Hall analysis of X-ray diffraction patterns. It was found to correlate with the estimates overall length of dislocation segments per unit volume which effectively interacts with elastic vibrations of the sample ∼ 4 · 1013m-2, as determined from acoustic relaxation measurements.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Y. Semerenko, V. Natsik, E.D. Tabachnikova, Y. Huang and T.G. Langdon, Mechanisms of Low-Temperature Dislocation Motion in High-Entropy Al0.5CoCrCuFeNi Alloy, Metals 14 (2024), 778

DOI: 10.3390/met14070778

Google Scholar

[2] O.S. Bulatov, V.S. Klochko, A.V. Korniyets, I.V. Kolodiy, O.O. Kondratov, T.M. Tikhonovska, Low temperature elastic properties of Al0.5CoCrCuFeNi high-entropy alloy, Funct. Mater. 28 (2021) 492-496

DOI: 10.15407/fm28.03.492

Google Scholar

[3] V.S. Klochko, A.V. Korniyets, I.V. Kolodiy, O.O. Kondratov, V.I. Sokolenko, V.I. Spitsyna, T.M. Tykhonovska, and N.A. Yayes, Ultrasonic Investigation of High-Entropy Al0.5CoCrCuFeNi Alloy at Low Temperature, Metallofiz. Noveishie Tekhnol. 45(4) (2023) 523–535

DOI: 10.15407/mfint.45.04.0523

Google Scholar

[4] E.J. Pickering, H.J. Stone, N.G. Jones, Fine-scale precipitation in the high-entropy alloy Al0.5CrFeCoNiCu, Mat. Sci. Eng. A645 (2015) 65-71

DOI: 10.1016/j.msea.2015.08.010

Google Scholar

[5] M.O. Laktionova, O.D. Tabachnikova, Z. Tang, P.K. Liaw, Mechanical properties of the high-entropy alloy Al0.5CoCrCuFeNi at temperatures of 4.2–300 K, Low Temp. Phys. 39 (2013) 630-632

DOI: 10.1063/1.4813688

Google Scholar

[6] Yu.O. Semerenko, O.D. Tabachnikova, T.M. Tikhonovska, I.V. Kolodiy, O.S. Tortika, S.E. Shumilin, and M.O. Laktionova, Temperature Dependence of the Acoustic and Mechanical Properties of Cast and Annealed High-Entropy Al0.5CoCuCrNiFe Alloy, Metallofiz. Noveishie Tekhnol. 37(11) (2015) 1527-1538. (in Russian)

DOI: 10.15407/mfint.37.11.1527

Google Scholar

[7] E.D. Tabachnikova, M.A. Laktionova, Yu.A. Semerenko, S.E. Shumilin, A.V. Podolskiy, M.A. Tikhonovsky, J. Miskuf, K. Csach, Mechanical properties of Al0.5CoCrCuFeNi high entropy alloy in different structural states in temperature range 0.5–300 K, Low Temp. Phys. 43(9) (2017) 1108-1118

DOI: 10.1063/1.5004457

Google Scholar

[8] Yu.A. Semerenko and V.D. Natsik, Low temperature peak of internal friction in high entropy Al0.5CoCrCuFeNi alloy, Low Temp. Phys. 46 (2020) 78-86

DOI: 10.1063/10.0000367

Google Scholar

[9] V.D. Natsik, Yu.O. Semerenko, E.D. Tabachnikova, Dislocation mechanisms of acoustic relaxation and plastic deformation of a high-entropy alloy Al0.5CoCrCuFeNi under moderate to deep cooling conditions: Experiment and theory (Review), Low Temp. Phys. 51 (2025) 282-299

DOI: 10.1063/10.0035810

Google Scholar

[10] L.I. Mirkin, Handbook of X-Ray Analysis of Polycrystalline Material, Consultants Bureau, New York, 1964. 731 pp.

Google Scholar

[11] V.D. Natsik, Yu.A. Semerenko, Dislocation mechanisms of low-temperature acoustic relaxation in iron, Low Temp. Phys. 45(5) (2019) 551-567

DOI: 10.1063/1.5097366

Google Scholar

[12] M. Koiwa, R.R. Hasiguti, A theory of internal friction peak due to thermal unpinning of dislocations and its application to P1 peak in copper, Acta Met. 13 (1965) 1219-1230

DOI: 10.1016/0001-6160(65)90032-5

Google Scholar

[13] D.H Niblett, Bordoni Peak in Face-Centered Cubic Metals // In Physical Acoustics, Ed. W.P. Mason, V. III, part. А, Academic Press, New York, (1964), 428pp.

Google Scholar

[14] A. Seeger, On the theory of the low-temperature internal friction peak observed in metals, Phyl. Mag. 1 (1956) 651-662

DOI: 10.1080/14786435608244000

Google Scholar

[15] E. Tabachnikova, T. Hryhorova, S. Shumilin, Y. Semerenko, Yi. Huang, Terence G. Langdon, Cryo-Severe Plastic Deformation, Microstructures and Properties of Metallic Nanomaterials at Low Temperatures, Mater. Trans. 64(8) (2023) 1806-1819

DOI: 10.2320/matertrans.MT-MF2022037

Google Scholar