Development of an IoT-Enabled Smart Home Automation System

Article Preview

Abstract:

The integration of Internet of Things (IoT) technologies is transforming homes by improving energy efficiency, safety, convenience, and even health. This paper presents the development of an IoT-enabled smart home automation system designed to enhance these aspects using cost-effective components and user-friendly control methods. The system utilizes the ESP8266 microcontroller along with KY-018 Light and HC-SR04 Ultrasonic Sensors to collect environmental data. Core features include real-time visual feedback through LEDs and LCD I2C displays, and remote operation via a custom Android mobile application integrated through Firebase. Both automated and manual control modes are provided, ensuring seamless and adaptive responses to real-world conditions. Experimental results confirm accurate detection and reliable control actions, demonstrating the practicality and scalability of this smart home automation system.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] N. Khunrattanaporn, P. Rijiravanich, M. Somasundrum, and W. Surareungchai, "Highly sensitive electrochemical detection of genomic DNA based on stem loop probes structured for magnetic collection and measurement via metalised hollow polyelectrolyte shells," Biosens. Bioelectron., vol. 73, p.181–187, 2015.

DOI: 10.1016/j.bios.2015.05.068

Google Scholar

[2] M. Xu, R. Wang, and Y. Li, "Electrochemical biosensors for rapid detection of Escherichia coli O157: H7," Talanta, vol. 162, p.511–522, 2017.

DOI: 10.1016/j.talanta.2016.10.050

Google Scholar

[3] T. Saxena, P. Kaushik, and M. Krishna Mohan, "Prevalence of E. coli O157: H7 in water sources: An overview on associated diseases, outbreaks and detection methods," Diagn. Microbiol. Infect. Dis., vol. 82, no. 3, p.249–264, 2015.

DOI: 10.1016/j.diagmicrobio.2015.03.015

Google Scholar

[4] B. Thakur et al., "Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device," Biosens. Bioelectron., vol. 110, p.16–22, 2018.

DOI: 10.1016/j.bios.2018.03.014

Google Scholar

[5] N. Shoaie, M. Forouzandeh, and K. Omidfar, "Voltammetric determination of the Escherichia coli DNA using a screen-printed carbon electrode modified with polyaniline and gold nanoparticles," Microchim. Acta, vol. 185, no. 4, pp.1-9, 2018.

DOI: 10.1007/s00604-018-2749-y

Google Scholar

[6] C. Song, J. Li, J. Liu, and Q. Liu, "Simple sensitive rapid detection of Escherichia coli O157:H7 in food samples by label-free immunofluorescence strip sensor," Talanta, vol. 156–157, p.42–47, 2016.

DOI: 10.1016/j.talanta.2016.04.054

Google Scholar

[7] Y. Luo and E. C. Alocilja, "Portable nuclear magnetic resonance biosensor and assay for a highly sensitive and rapid detection of foodborne bacteria in complex matrices," J. Biol. Eng., vol. 11, no. 1, p.1–8, 2017.

DOI: 10.1186/s13036-017-0053-8

Google Scholar

[8] M. Nur et al., "Conductometric immunosensor for specific Escherichia coli O157 : H7 detection on chemically funcationalizaed interdigitated aptasensor," Heliyon, vol. 10, no. 5, p. e26988, 2024.

DOI: 10.1016/j.heliyon.2024.e26988

Google Scholar

[9] U. Hashim et al., "Advancing COVID-19 Detection: High-Performance RNA Biosensing via Electrical Interactions," Int. J. Nanoelectron. Mater., vol. 17, no. June Special issue, p.229–235, 2024.

DOI: 10.58915/ijneam.v17iJune.862

Google Scholar

[10] M. N. Afnan Uda et al., "Aluminium Interdigitated Electrode with 5.0 µm Gap for Electrolytic Scooting," Int. J. Nanoelectron. Mater., vol. 17, no. Special issue, p.237–243, 2024.

DOI: 10.58915/ijneam.v17iJune.863

Google Scholar

[11] M. N. Afnan Uda, A. B. Jambek, U. Hashim, and M. N. A. Uda, "Development of Voltage Amplifier Electronic Reader for Multiplex Detection of Two Electrode Electrical Biosensors," IOP Conf. Ser. Mater. Sci. Eng., vol. 743, no. 1, 2020.

DOI: 10.1088/1757-899X/743/1/012019

Google Scholar

[12] M. Isa et al., "Arthropods-mediated Green Synthesis of Zinc Oxide Nanoparticles using Cellar Spider Extract: A Biocompatible Remediation for Environmental Approach," Int. J. Nanoelectron. Mater., vol. 17, no. Special Issue, p.211–219, 2024.

DOI: 10.58915/ijneam.v17iJune.860

Google Scholar

[13] M. N. Afnan Uda et al., "Nano-micro-mili Current to Mili Voltage Amplifier for Amperometric Electrical Biosensors," IOP Conf. Ser. Mater. Sci. Eng., vol. 743, no. 1, 2020.

DOI: 10.1088/1757-899X/743/1/012021

Google Scholar

[14] J. L. Soler-Llorens, J. J. Galiana-Merino, J. Giner-Caturla, P. Jauregui-Eslava, S. Rosa-Cintas, and J. Rosa-Herranz, "Development and programming of Geophonino: A low cost Arduino-based seismic recorder for vertical geophones," Comput. Geosci., vol. 94, p.1–10, 2016.

DOI: 10.1016/j.cageo.2016.05.014

Google Scholar

[15] I. Luiz, B. De Moura, L. Carlos, D. S. Monteiro, and F. A. Soares, "Low Cost Surface Electromyographic Signal Amplifier Based On Arduino Microcontroller," Int. J. Electr. Robot. Electron. Commun. Eng., vol. 8, no. 2, p.310–314, 2014.

Google Scholar

[16] O. A. Olumodeji and M. Gottardi, "Arduino-controlled HP memristor emulator for memristor circuit applications," Integr. VLSI J., vol. 58, no. March, p.438–445, 2017.

DOI: 10.1016/j.vlsi.2017.03.004

Google Scholar

[17] M. N. A. Uda et al., "Harumanis Mango: Perspectives in Disease Management and Advancement using Interdigitated Electrodes (IDE) Nano-Biosensor," IOP Conf. Ser. Mater. Sci. Eng., vol. 864, no. 1, 2020.

DOI: 10.1088/1757-899X/864/1/012180

Google Scholar

[18] L. O. Agbolade et al., "Revisiting the Optoelectronic Properties of Graphene: A DFT Approach," Int. J. Nanoelectron. Mater., vol. 17, no. 1, p.76–88, 2024.

DOI: 10.58915/ijneam.v17i1.476

Google Scholar

[19] M. N. A. Uda, U. Hashim, S. C. B. Gopinath, M. N. A. Uda, N. A. Parmin, and A. M. Isa, "Label-free aptamer based biosensor for heavy metal detection," AIP Conf. Proc., vol. 2291, no. November, 2020.

DOI: 10.1063/5.0022834

Google Scholar

[20] J. M. Ismail et al., "Synthesis of Zinc Oxide Nanoparticles via Cellar Spider Extract for Enhanced Functional Properties in Antimicrobial Activities," Int. J. Nanoelectron. Mater., vol. 17, no. June Special issue, p.203–210, 2024.

DOI: 10.58915/ijneam.v17iJune.856

Google Scholar

[21] M. N. A. Uda et al., "Analysis on Silica and Graphene Nanomaterials Obtained From Rice Straw for Antimicrobial Potential," Int. J. Nanoelectron. Mater., vol. 17, no. Special issue, p.221–228, 2024.

DOI: 10.58915/ijneam.v17iJune.861

Google Scholar

[22] M. N. Afnan Uda, A. B. Jambek, U. Hashim, and M. N. A. Uda, "Electrical DNA Biosensor Using Aluminium Interdigitated Electrode for Salmonella Detection," IOP Conf. Ser. Mater. Sci. Eng., vol. 743, no. 1, 2020.

DOI: 10.1088/1757-899X/743/1/012022

Google Scholar