Impact of Artificial Intelligence on Management Control Processes

Article Preview

Abstract:

Digital transformation has developed significantly in the 21st century, and special attention has been paid to it in business and society. It is becoming more relevant and presents the private and public sectors with new challenges. Computer and mobile devices, information, and communication technologies are actively used in social, economic, industrial, engineering, and other fields, to create and implement their respective new-generation software applications. New paradigms based on the software industry including the development, and creation of new methods and methodologies or perfecting the existing ones are receiving a lot of attention worldwide, on which artificial intelligence (AI) had a significant impact. Regarding the ongoing digital transformation of organizations and business models companies have been facing the challenge for years of digitalizing the processes in management control. These processes have been undergoing fundamental changes, driven by the rapid development of AI in recent years. In this context, one of the most innovative and significant technological breakthroughs was the development of generative AI. AI tool ChatGPT plays an important role in advancing scientific progress by promoting the use of artificial intelligence, improving user interaction and accelerating innovation in various industries. This paper explores how AI can increase the effectiveness and efficiency of decision-making and management control. Efficiency is achieved through strategic decisions and efficiency through operational decisions. By integrating AI technologies, organizations can automate repetitive tasks, streamline data processes, and improve financial reporting and forecasting accuracy. AI-based analytics provide managers with deeper insights that enable more informed decisions about resources, processes, products and services. In addition, the paper examines how AI has shifted organizational focus from operational efficiency to strategic priorities. This change has contributed to a more flexible and responsive management control framework that allows organizations to adapt quickly their control system to changing market conditions and maintain a competitive advantage. In addition, one of the most prominent fields today is nanomanufacturing and the optimization of production processes. Through AI-driven optimization, it becomes possible to refine the synthesis and assembly of nanostructures, significantly improving precision and efficiency in production.

You have full access to the following eBook

Info:

Periodical:

Pages:

53-64

Citation:

Online since:

November 2025

Export:

Share:

Citation:

* - Corresponding Author

[1] M. Sundu, V. Ozdemir, The effect of artificial intelligence on management process: Challenges and opportunities, in: Challenges and Opportunities for SMEs in Industry 4.0, IGI Global Sci. Publ., New York–Beijing, 2020, Ch. 3, pp.22-41.

DOI: 10.4018/978-1-7998-2577-7.ch003

Google Scholar

[2] L. Rabia, Artificial intelligence in management control: Diverse strategies of global market leaders, Remittances Rev. 9 (1) (2024) 187-198.

Google Scholar

[3] R.J. de Almeida, The impact of Intelligent Systems on Management Control of 21st Century Organizations (Master's in Management), Univ. Inst. Lisbon, Lisbon, 2022.

Google Scholar

[4] E. Ponick, G. Wieczorek, Artificial intelligence in governance, risk and compliance results of a study on potentials for the application of artificial intelligence (AI) in governance, risk and compliance (GRC), arXiv: 2212.03601v2 [cs. CY] (2021) 1-55.

Google Scholar

[5] M.H. Jarrahi, M. Mohlmann, M.K. Lee, Algorithmic Management: The role of AI in managing workforces, MIT Sloan Manag. Rev. (2023 April 5) 1-6.

Google Scholar

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, Adv. Neural Inf. Proc. Syst. 30 (2017) 1-11.

Google Scholar

[7] T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert–Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter, Ch. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, Ch. Berner, S. Mc Candlish, A. Radford, I. Sutskever, D. Amodei, Language models are few-shot learners, arXiv: 2005.14165v4 [cs. CL] (2020) 1-75.

Google Scholar

[8] I. Goodfellow, J. Pouget–Abadie, M. Mirza, B. Xu, D. Warde–Farley, Sh. Ozair, A. Courville, Y. Bengio. Generative adversarial networks. Commun. ACM, 63 (11) (2014) 139-144.

DOI: 10.1145/3422622

Google Scholar

[9] A. Ramesh, M. Pavlov, G. Goh, S. Gray, Ch. Voss, A. Radford, M. Chen, I. Sutskever, Zero-shot text-to-image generation, Proc. Mach. Learn. Res. 139 (2021) 8821-8831.

Google Scholar

[10] M. Chen, J. Tworek, H. Jun, Q. Yuan, H.P.D.O. Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, Ph. Tillet, F.P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert–Voss, W.H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, Sh. Jain, W. Saunders, Ch. Hesse, A.N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. Mc Grew, D. Amodei, S. Mc Candlish, I. Sutskever, W. Zaremba, Evaluating large language models trained on code, arXiv: 2107.03374v2 [cs. LG] (2021) 1-35.

Google Scholar

[11] P. Dhariwal, H. Jun, C. Payne, J.W. Kim, A. Radford, I. Sutskever, Jukebox: A generative model for music. arXiv: 2005.00341v1 [eess. AS] (2020) 1-20.

Google Scholar

[12] G. Gogichaishvili, L. Petriashvili, M. Inaishvili, The algorithm of artificial intelligence for transportation of perishable products, Bull. Georgian Natl. Acad. Sci. 16 (4) (2022) 27-32.

Google Scholar

[13] L. Petriashvili, I. Khomeriki, The impact of artificial intelligence in the business process in the phase of data analytics, Georgian Sci. 6 (1) (2024) 38-44.

DOI: 10.52340/gs.2024.06.01.07

Google Scholar

[14] K. Nobach, Bedeutung der Digitalisierung für das Controlling und den Controller, in: P. Ulrich, B. Baltzer (Eds.), Wertschöpfung in der Betriebswirtschaftslehre, Springer Gabler, Wiesbaden, 2018, pp.247-269.

DOI: 10.1007/978-3-658-18573-2_11

Google Scholar

[15] K. Nobach, B. Zirkler, J. Hofmann, Implikationen der Digitalisierung für das Controlling, Controller Mag., 6 (2020) 56-62.

Google Scholar

[16] K. Nobach, B. Zirkler, J. Hofmann, Projektcontrolling – Leitfaden für die betriebliche Praxis, 2. Auflage, Springer Fachmedien Wiesbaden, Wiesbaden, 2024.

DOI: 10.1007/978-3-658-45381-7

Google Scholar

[17] R. Bommasani, D.A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M.S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, Sh. Buch, D. Card, R. Castellon, N, Chatterji, A. Chen, K. Creel, J.Q. Davis, D. Demszky, Ch. Donahue, M. Doumbouya, E. Durmus, S. Ermon, J. Etchemendy, K. Ethayarajh, L. Fei–Fei, Ch. Finn, T. Gale, L. Gillespie, K. Goel, N. Goodman, Sh. Grossman, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D.E. Ho, J. Hong, K. Hsu, J. Huang, Th. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti, G. Keeling, F. Khani, O. Khattab, P.W. Koh, M. Krass, R. Krishna, R. Kuditipudi, A. Kumar, F. Ladhak, M. Lee, T. Lee, J. Leskovec, I. Levent, X.L. Li, X. Li, T. Ma, A. Malik, Ch.D. Manning, S. Mirchandani, E. Mitchell, Z. Munyikwa, S. Nair, A. Narayan, D. Narayanan, B. Newman, A. Nie, J.C. Niebles, H. Nilforoshan, J. Nyarko, G. Ogut, L. Orr, I. Papadimitriou, J.S. Park, Ch. Piech, E. Portelance, Ch. Potts, A. Raghunathan, R. Reich, H. Ren, F. Rong, Y. Roohani, C. Ruiz, J. Ryan, Ch. Re, D. Sadigh, Sh. Sagawa, K. Santhanam, A. Shih, K. Srinivasan, A. Tamkin, R. Taori, A.W. Thomas, F. Tramer, R.E. Wang, W. Wang, B. Wu, J. Wu, Y. Wu, S.M. Xie, M, Yasunaga, J. You, M. Zaharia, M. Zhang, T. Zhang, X. Zhang, Y. Zhang, L. Zheng, K. Zhou, P. Liang. On the opportunities and risks of foundation models, arXiv: 2108.07258v3 [cs. LG] (2022) 1-214.

Google Scholar

[18] A. Jabbar, X. Li, B. Omar, A survey on generative adversarial networks: Variants, applications, and training, ACM Comput. Surveys, 54 (8) (2021) 157 (1-49).

DOI: 10.1145/3463475

Google Scholar

[19] E.M. Bender, T. Gebru, A. Mc Millan–Major, S. Shmitchell, On the dangers of stochastic parrots: Can language models be too big? in: Proc. 2021 ACM Conf. Fairness, Accountability, and Transparency (2021) 610-623.

DOI: 10.1145/3442188.3445922

Google Scholar

[20] H. Touvron, Th. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, G. Lample, LLaMA: Open and efficient foundation language models, arXiv: 2302.13971v1 [cs. CL] (2023) 1-27.

Google Scholar

[21] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E.H. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean, W. Fedus, Emergent abilities of large language models, Trans. Mach. Learn. Res. 8 (2022) 1-30.

Google Scholar

[22] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C.L. Wainwright, P. Mishkin, Ch. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, R. Lowe, Training language models to follow instructions with human feedback, Adv. Neural Inf. Proc. Syst. 35 (2022) 27730-27744.

Google Scholar

[23] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, M. Chen, Hierarchical text-conditional image generation with CLIP latents, arXiv: 2204.06125v1 [cs. CV] (2022) 1-27.

Google Scholar

[24] J.S. Park, J.C. O'Brien, C.J. Cai, M.R. Morris, P. Liang, M.S. Bernstein, Generative agents: Interactive simulacra of human behavior, arXiv: 2304.03442v2 [cs. HC] (2023) 1-22.

Google Scholar

[25] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke, P. Florence, Socratic Models: Composing zero-shot multimodal reasoning with language, arXiv: 2204.00598v2 [cs. CV] (2022) 1-30.

Google Scholar