[1]
M. Sundu, V. Ozdemir, The effect of artificial intelligence on management process: Challenges and opportunities, in: Challenges and Opportunities for SMEs in Industry 4.0, IGI Global Sci. Publ., New York–Beijing, 2020, Ch. 3, pp.22-41.
DOI: 10.4018/978-1-7998-2577-7.ch003
Google Scholar
[2]
L. Rabia, Artificial intelligence in management control: Diverse strategies of global market leaders, Remittances Rev. 9 (1) (2024) 187-198.
Google Scholar
[3]
R.J. de Almeida, The impact of Intelligent Systems on Management Control of 21st Century Organizations (Master's in Management), Univ. Inst. Lisbon, Lisbon, 2022.
Google Scholar
[4]
E. Ponick, G. Wieczorek, Artificial intelligence in governance, risk and compliance results of a study on potentials for the application of artificial intelligence (AI) in governance, risk and compliance (GRC), arXiv: 2212.03601v2 [cs. CY] (2021) 1-55.
Google Scholar
[5]
M.H. Jarrahi, M. Mohlmann, M.K. Lee, Algorithmic Management: The role of AI in managing workforces, MIT Sloan Manag. Rev. (2023 April 5) 1-6.
Google Scholar
[6]
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, Adv. Neural Inf. Proc. Syst. 30 (2017) 1-11.
Google Scholar
[7]
T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert–Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter, Ch. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, Ch. Berner, S. Mc Candlish, A. Radford, I. Sutskever, D. Amodei, Language models are few-shot learners, arXiv: 2005.14165v4 [cs. CL] (2020) 1-75.
Google Scholar
[8]
I. Goodfellow, J. Pouget–Abadie, M. Mirza, B. Xu, D. Warde–Farley, Sh. Ozair, A. Courville, Y. Bengio. Generative adversarial networks. Commun. ACM, 63 (11) (2014) 139-144.
DOI: 10.1145/3422622
Google Scholar
[9]
A. Ramesh, M. Pavlov, G. Goh, S. Gray, Ch. Voss, A. Radford, M. Chen, I. Sutskever, Zero-shot text-to-image generation, Proc. Mach. Learn. Res. 139 (2021) 8821-8831.
Google Scholar
[10]
M. Chen, J. Tworek, H. Jun, Q. Yuan, H.P.D.O. Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, Ph. Tillet, F.P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert–Voss, W.H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, Sh. Jain, W. Saunders, Ch. Hesse, A.N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. Mc Grew, D. Amodei, S. Mc Candlish, I. Sutskever, W. Zaremba, Evaluating large language models trained on code, arXiv: 2107.03374v2 [cs. LG] (2021) 1-35.
Google Scholar
[11]
P. Dhariwal, H. Jun, C. Payne, J.W. Kim, A. Radford, I. Sutskever, Jukebox: A generative model for music. arXiv: 2005.00341v1 [eess. AS] (2020) 1-20.
Google Scholar
[12]
G. Gogichaishvili, L. Petriashvili, M. Inaishvili, The algorithm of artificial intelligence for transportation of perishable products, Bull. Georgian Natl. Acad. Sci. 16 (4) (2022) 27-32.
Google Scholar
[13]
L. Petriashvili, I. Khomeriki, The impact of artificial intelligence in the business process in the phase of data analytics, Georgian Sci. 6 (1) (2024) 38-44.
DOI: 10.52340/gs.2024.06.01.07
Google Scholar
[14]
K. Nobach, Bedeutung der Digitalisierung für das Controlling und den Controller, in: P. Ulrich, B. Baltzer (Eds.), Wertschöpfung in der Betriebswirtschaftslehre, Springer Gabler, Wiesbaden, 2018, pp.247-269.
DOI: 10.1007/978-3-658-18573-2_11
Google Scholar
[15]
K. Nobach, B. Zirkler, J. Hofmann, Implikationen der Digitalisierung für das Controlling, Controller Mag., 6 (2020) 56-62.
Google Scholar
[16]
K. Nobach, B. Zirkler, J. Hofmann, Projektcontrolling – Leitfaden für die betriebliche Praxis, 2. Auflage, Springer Fachmedien Wiesbaden, Wiesbaden, 2024.
DOI: 10.1007/978-3-658-45381-7
Google Scholar
[17]
R. Bommasani, D.A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M.S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, Sh. Buch, D. Card, R. Castellon, N, Chatterji, A. Chen, K. Creel, J.Q. Davis, D. Demszky, Ch. Donahue, M. Doumbouya, E. Durmus, S. Ermon, J. Etchemendy, K. Ethayarajh, L. Fei–Fei, Ch. Finn, T. Gale, L. Gillespie, K. Goel, N. Goodman, Sh. Grossman, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D.E. Ho, J. Hong, K. Hsu, J. Huang, Th. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti, G. Keeling, F. Khani, O. Khattab, P.W. Koh, M. Krass, R. Krishna, R. Kuditipudi, A. Kumar, F. Ladhak, M. Lee, T. Lee, J. Leskovec, I. Levent, X.L. Li, X. Li, T. Ma, A. Malik, Ch.D. Manning, S. Mirchandani, E. Mitchell, Z. Munyikwa, S. Nair, A. Narayan, D. Narayanan, B. Newman, A. Nie, J.C. Niebles, H. Nilforoshan, J. Nyarko, G. Ogut, L. Orr, I. Papadimitriou, J.S. Park, Ch. Piech, E. Portelance, Ch. Potts, A. Raghunathan, R. Reich, H. Ren, F. Rong, Y. Roohani, C. Ruiz, J. Ryan, Ch. Re, D. Sadigh, Sh. Sagawa, K. Santhanam, A. Shih, K. Srinivasan, A. Tamkin, R. Taori, A.W. Thomas, F. Tramer, R.E. Wang, W. Wang, B. Wu, J. Wu, Y. Wu, S.M. Xie, M, Yasunaga, J. You, M. Zaharia, M. Zhang, T. Zhang, X. Zhang, Y. Zhang, L. Zheng, K. Zhou, P. Liang. On the opportunities and risks of foundation models, arXiv: 2108.07258v3 [cs. LG] (2022) 1-214.
Google Scholar
[18]
A. Jabbar, X. Li, B. Omar, A survey on generative adversarial networks: Variants, applications, and training, ACM Comput. Surveys, 54 (8) (2021) 157 (1-49).
DOI: 10.1145/3463475
Google Scholar
[19]
E.M. Bender, T. Gebru, A. Mc Millan–Major, S. Shmitchell, On the dangers of stochastic parrots: Can language models be too big? in: Proc. 2021 ACM Conf. Fairness, Accountability, and Transparency (2021) 610-623.
DOI: 10.1145/3442188.3445922
Google Scholar
[20]
H. Touvron, Th. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, G. Lample, LLaMA: Open and efficient foundation language models, arXiv: 2302.13971v1 [cs. CL] (2023) 1-27.
Google Scholar
[21]
J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E.H. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean, W. Fedus, Emergent abilities of large language models, Trans. Mach. Learn. Res. 8 (2022) 1-30.
Google Scholar
[22]
L. Ouyang, J. Wu, X. Jiang, D. Almeida, C.L. Wainwright, P. Mishkin, Ch. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, R. Lowe, Training language models to follow instructions with human feedback, Adv. Neural Inf. Proc. Syst. 35 (2022) 27730-27744.
Google Scholar
[23]
A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, M. Chen, Hierarchical text-conditional image generation with CLIP latents, arXiv: 2204.06125v1 [cs. CV] (2022) 1-27.
Google Scholar
[24]
J.S. Park, J.C. O'Brien, C.J. Cai, M.R. Morris, P. Liang, M.S. Bernstein, Generative agents: Interactive simulacra of human behavior, arXiv: 2304.03442v2 [cs. HC] (2023) 1-22.
Google Scholar
[25]
A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke, P. Florence, Socratic Models: Composing zero-shot multimodal reasoning with language, arXiv: 2204.00598v2 [cs. CV] (2022) 1-30.
Google Scholar