Portable VIS-NIR Spectrophotometer for Detecting Adulteration of Minced Beef and Chicken Using AS7341 Sensor with PCA Method

Article Preview

Abstract:

The most vulnerable food products related to halal issues are in the form of mixing beef and chicken meat with pork, which has a physical resemblance if not carefully considered. The rise of meat adulteration is often found due to high demand and high prices. For this reason, a fast, effective, and low-cost meat adulteration detection tool is needed. Detection of beef and chicken adulteration in this study was carried out using a VIS-NIR spectrophotometer from an AS7341 multispectral sensor equipped with an LED light source and 11 channels to read the reflection of meat light in the near light and near infrared ranges, raspberry pi as a microcontroller, data displayed on an LCD stored in CSV form. The results of sensor response patterns formed in beef, chicken, pork, mixed beef-pork, and minced chicken-pork mixed meat show different characteristics. Then to clarify the characteristics of each meat, the results of the sensor response were analyzed using the Principle Componen Analysis (PCA) method. The results of data reduction from PCA projections through Principle Component 1 and Principle Component 2 regions are able to detect the presence of pork mixture in beef and chicken. The results of the PCA score plot on beef, pork and cow-pig mixture the percentage of PC1 is 100% and PC2 is 0% while on chicken, pork and chicken-pig mixture the percentage of PC1 is 100% and PC2 is 0%. The results of this study show the great potential of using a portable spectrophotometer using the AS7341 sensor whose results are analyzed using the PCA method to detect adulteration of minced beef and chicken.

You have full access to the following eBook

Info:

Periodical:

Pages:

9-20

Citation:

Online since:

November 2025

Export:

Share:

Citation:

* - Corresponding Author

[1] N.R.W. Geiker, H.C. Bertram, H. Mejborn, L.O. Dragsted, L. Kristensen, J.R. Carrascal, S. Bügel, A. Astrup, Meat And Human Health—Current Knowledge And Research Gaps, Foods 10 (2021) 1556.

DOI: 10.3390/Foods10071556

Google Scholar

[2] H. Górska-Warsewicz, W. Laskowski, O. Kulykovets, A. Kudlińska-Chylak, M. Czeczotko, K. Rejman, Food Products As Sources Of Protein And Amino Acids—The Case Of Poland, Nutrients 10 (2018) 1977.

DOI: 10.3390/Nu10121977

Google Scholar

[3] K. Nakyinsige, Y.B.C. Man, A.Q. Sazili, Halal Authenticity Issues In Meat And Meat Products, Meat Science 91 (2012) 207–214.

DOI: 10.1016/J.Meatsci.2012.02.015

Google Scholar

[4] R.M.H.R. Nhari, I. Hanish, N.F.K. Mokhtar, M. Hamid, A.F.E. Sheikha, Authentication Approach Using Enzyme-Linked Immunosorbent Assay For Detection Of Porcine Substances, Quality Assurance And Safety Of Crops & Foods 11 (2019) 449–457.

DOI: 10.3920/Qas2018.1415

Google Scholar

[5] X. Chen, D. Ran, L. Zeng, M. Xin, Immunoassay Of Cooked Wild Rat Meat By Elisa With A Highly Specific Antibody Targeting Rat Heat-Resistant Proteins, Food And Agricultural Immunology 31 (2020) 533–544.

DOI: 10.1080/09540105.2020.1740180

Google Scholar

[6] R.M. Gecaj, S. Muji, F.C. Ajazi, B. Berisha, A. Kryeziu, M. Ismaili, Investigation Of Pork Meat In Chicken- And Beef-Based Commercial Products By Elisa And Real-Time Pcr Sold At Retail In Kosovo, Czech J. Food Sci. 39 (2021) 368–375.

DOI: 10.17221/164/2020-Cjfs

Google Scholar

[7] S.-A. Kim, J.-E. Lee, D.-H. Kim, S. Lee, H.-K. Yang, W.-B. Shim, A Highly Sensitive Indirect Enzyme-Linked Immunosorbent Assay (Elisa) Based On A Monoclonal Antibody Specific To Thermal Stable-Soluble Protein In Pork Fat For The Rapid Detection Of Pork Fat Adulterated In Heat-Processed Beef Meatballs, Food Sci Anim Resour 43 (2023) 989–1001.

DOI: 10.5851/Kosfa.2023.E55

Google Scholar

[8] A.W. Pranata, N.D. Yuliana, L. Amalia, N. Darmawan, Volatilomics For Halal And Non-Halal Meatball Authentication Using Solid-Phase Microextraction–Gas Chromatography–Mass Spectrometry, Arabian Journal Of Chemistry 14 (2021) 103146.

DOI: 10.1016/J.Arabjc.2021.103146

Google Scholar

[9] N. Salamah, A. Guntarti, P.A. Lestari, I.G. Gandjar, Fat Analysis Of House Rat (Rattus Tanezumi) In Meatball Using Gas Chromatography-Mass Spectrometry (Gc-Ms) Combined With Principal Component Analysis, Indonesian J Pharm (2022).

DOI: 10.22146/Ijp.1781

Google Scholar

[10] K.R. Dewi, M. Ismayati, N.N. Solihat, N.D. Yuliana, F. Kusnandar, H. Riantana, H. Heryani, A. Halim, T. Acter, N. Uddin, S. Kim, Advances And Key Considerations Of Liquid Chromatography–Mass Spectrometry For Porcine Authentication In Halal Analysis, J Anal Sci Technol 14 (2023) 13.

DOI: 10.1186/S40543-023-00376-3

Google Scholar

[11] C. Von Bargen, J. Brockmeyer, H.-U. Humpf, Meat Authentication: A New Hplc–Ms/Ms Based Method For The Fast And Sensitive Detection Of Horse And Pork In Highly Processed Food, J. Agric. Food Chem. 62 (2014) 9428–9435.

DOI: 10.1021/Jf503468t

Google Scholar

[12] X.-D. Pan, J. Chen, Q. Chen, B.-F. Huang, J.-L. Han, Authentication Of Pork In Meat Mixtures Using Prm Mass Spectrometry Of Myosin Peptides, Rsc Adv. 8 (2018) 11157–11162.

DOI: 10.1039/C8ra00926k

Google Scholar

[13] J. Spörl, K. Speer, W. Jira, A Uhplc-Ms/Ms Method For The Detection Of Meat Substitution By Nine Legume Species In Emulsion-Type Sausages, Foods 10 (2021) 947.

DOI: 10.3390/Foods10050947

Google Scholar

[14] M. Cahyadi, T. Wibowo, A. Pramono, Z.H. Abdurrahman, A Novel Multiplex-Pcr Assay To Detect Three Non-Halal Meats Contained In Meatball Using Mitochondrial 12s Rrna Gene, Food Science Of Animal Resources 40 (2020) 628.

DOI: 10.5851/Kosfa.2020.E40

Google Scholar

[15] A. Guntarti, S. Martono, A. Yuswanto, A. Rohman, Ftir Spectroscopy In Combination With Chemometrics For Analysis Of Wild Boar Meat In Meatball Formulation, Asian J. Of Biochemistry 10 (2015) 165–172.

DOI: 10.3923/Ajb.2015.165.172

Google Scholar

[16] L.A. Lestari, Y. Erwanto, A. Rohman, Falsafah Sains Dan Halal, Pustaka Pelajar, 2023. Http://Repository.Iainkudus.Ac.Id/9583/1/Falsafah%20sains%20halal.Pdf.

Google Scholar

[17] P.E. Susilowati, Irnawati, A. Zaeni, Autentikasi Halal: Aplikasi Spektroskopi Ftir Kombinasi Kemometrika Untuk Analisis Lemak Babi Dalam Campuran Biner Dengan Lemak Sapi, Indonesia Journal Of Chemometrics And Pharmaceutial Analysis (2021) 102–109.

DOI: 10.14710/halal.v2i1.4433

Google Scholar

[18] M.A. Siddiqui, M.H.M. Khir, G. Witjaksono, A.S.M. Ghumman, M. Junaid, S.A. Magsi, A. Saboor, Multivariate Analysis Coupled With M-Svm Classification For Lard Adulteration Detection In Meat Mixtures Of Beef, Lamb, And Chicken Using Ftir Spectroscopy, Foods 10 (2021) 2405.

DOI: 10.3390/Foods10102405

Google Scholar

[19] A. Rohman, A. Himawati, K. Triyana, Sismindari, S. Fatimah, Identification Of Pork In Beef Meatballs Using Fourier Transform Infrared Spectrophotometry And Real-Time Polymerase Chain Reaction, International Journal Of Food Properties 20 (2017) 654–661.

DOI: 10.1080/10942912.2016.1174940

Google Scholar

[20] D. Lestari, A. Rohman, S. Syofyan, N.D. Yuliana, N.K.Bt. Abu Bakar, D. Hamidi, Analysis Of Beef Meatballs With Rat Meat Adulteration Using Fourier Transform Infrared (Ftir) Spectroscopy In Combination With Chemometrics, International Journal Of Food Properties 25 (2022) 1446–1457.

DOI: 10.1080/10942912.2022.2083637

Google Scholar

[21] W.S. Rahayu, A. Rohman, S. Martono, S. Sudjadi, Application Of Ftir Spectroscopy And Chemometrics For Halal Authentication Of Beef Meatball Adulterated With Dog Meat, Indonesian Journal Of Chemistry 18 (2018) 376–381.

DOI: 10.22146/Ijc.27159

Google Scholar

[22] T.N.I. Sari, A. Guntarti, Wild Boar Fat Analysis In Beef Sausage Using Fourier Transform Infrared (Ftir Method) Combined With Chemometrics, Jkki : Jurnal Kedokteran Dan Kesehatan Indonesia (2018) 16–23.

DOI: 10.20885/Jkki.Vol9.Iss1.Art4

Google Scholar

[23] B. Kuswandi, F.K. Putri, A.A. Gani, M. Ahmad, Application Of Class-Modelling Techniques To Infrared Spectra For Analysis Of Pork Adulteration In Beef Jerkys, Journal Of Food Science And Technology 52 (2015) 7655.

DOI: 10.1007/S13197-015-1882-4

Google Scholar

[24] Y. Erwanto, A.T. Muttaqien, Sugiyono, Sismindari, A. Rohman, Use Of Fourier Transform Infrared (Ftir) Spectroscopy And Chemometrics For Analysis Of Lard Adulteration In "Rambak" Crackers, International Journal Of Food Properties 19 (2016) 2718–2725.

DOI: 10.1080/10942912.2016.1143839

Google Scholar

[25] S.B. Sulistyo, A. Sudarmaji, S. Siswantoro, A. Margiwiyatno, M. Masrukhi, A. Mustofa, R. Ediati, R. Listanti, H.H. Hidayat, Portable Near Infrared Spectrometer Dengan Sensor As7263 Untuk Pendugaan Sifat Kimia Jeruk Siam (Citrus Nobilis) Secara Non-Destruktif, Jtp 22 (2021) 81–88.

DOI: 10.21776/Ub.Jtp.2021.022.02.1

Google Scholar

[26] T.N. Tran, R. Keller, V.Q. Trinh, K.Q. Tran, R. Kaldenhoff, Reflectance At Visible Wavelengths For Biological And Biochemical Characteristics Of Ocimum Basilicum - Practicability Of Colour Sensors For Plant Phenotyping, (2022).

DOI: 10.20944/Preprints202203.0341.V1

Google Scholar

[27] C. Kendell, A. Watson, I. Lee, J. Weimer, Glucoscan: Noninvasive Glucose Monitoring Device, In: 2022 Ieee/Acm Conference On Connected Health: Applications, Systems And Engineering Technologies (Chase), 2022: Pp. 158–159. Https://Ieeexplore.Ieee.Org/Document/9983655 (Accessed May 15, 2025).

Google Scholar

[28] Q.-H. Pham, T.-N. Nguyen, A.-Q.H. Ba, H.-H. Ngo, H.-H. Vo, N.-T. Tran, An Embedded System For Non-Invasive Glucose Monitoring, In: 2023 International Conference On Multimedia Analysis And Pattern Recognition (Mapr), Ieee, Quy Nhon, Vietnam, 2023: Pp. 1–6.

DOI: 10.1109/Mapr59823.2023.10289110

Google Scholar

[29] A. Mohagheghi, M. Moallem, An Energy-Efficient Par-Based Horticultural Lighting System For Greenhouse Cultivation Of Lettuce, Ieee Access 11 (2023) 8834–8844.

DOI: 10.1109/Access.2023.3237757

Google Scholar

[30] J. Larochelle, J. Klueppel, R. Mccormick, K. Biegert, L.M. Comella, A Low-Power Optical Sensor With Dynamically Adjustable Field Of View For Photosynthetically Active Radiation (Par) Measurement, Ieee Sensors J. 24 (2024) 7711–7728.

DOI: 10.1109/Jsen.2024.3361086

Google Scholar

[31] R.J.W. Brewin, T.G. Brewin, P.J. Bresnahan, K. Davis, X. Sun, N. Wilson, L. Brunner, G. Dall'olmo, Lab On A Secchi Disk: A Prototype Open-Source Profiling Package For Low-Cost Monitoring In Aquatic Environments, Limnology And Oceanography: Methods 22 (2024) 507–526.

DOI: 10.1002/Lom3.10624

Google Scholar

[32] C. Jaisin, S. Aumtong, C. Chotamonsak, Using Optical Sensor Applied To Rapid Soil Test Kit For Nh4+ And No3- In Soil, (2024).

DOI: 10.20944/Preprints202403.1520.V1

Google Scholar

[33] J.S. Botero-Valencia, M. Mejia-Herrera, J.M. Pearce, Design Of A Low-Cost Mobile Multispectral Albedometer With Geopositioning And Absolute Orientation, Hardwarex 12 (2022) E00324.

DOI: 10.1016/J.Ohx.2022.E00324

Google Scholar

[34] J.S. Botero-Valencia, C. Barrantes-Toro, D. Marquez-Viloria, J.M. Pearce, Low-Cost Air, Noise, And Light Pollution Measuring Station With Wireless Communication And Tinyml, Hardwarex 16 (2023) E00477.

DOI: 10.1016/J.Ohx.2023.E00477

Google Scholar

[35] L. Li, J. Guo, Q. Wang, J. Wang, Y. Liu, Y. Shi, Design And Experiment Of A Portable Near-Infrared Spectroscopy Device For Convenient Prediction Of Leaf Chlorophyll Content, Sensors 23 (2023) 8585.

DOI: 10.3390/S23208585

Google Scholar

[36] K. Halicka, F. Meloni, M. Czok, K. Spychalska, S. Baluta, K. Malecha, M.I. Pilo, J. Cabaj, New Trends In Fluorescent Nanomaterials-Based Bio/Chemical Sensors For Neurohormones Detection─A Review, Acs Omega 7 (2022) 33749–33768.

DOI: 10.1021/Acsomega.2c04134

Google Scholar

[37] K. Kumari, R. Parray, Y.B. Basavaraj, S. Godara, I. Mani, R. Kumar, T. Khura, S. Sarkar, R. Ranjan, H. Mirzakhaninafchi, Spectral Sensor-Based Device For Real-Time Detection And Severity Estimation Of Groundnut Bud Necrosis Virus In Tomato, Journal Of Field Robotics N/A (N.D.).

DOI: 10.1002/Rob.22391

Google Scholar

[38] F. Samsuri, J.W. Simatupang, Internet Of Things And Web-App-Based Data Accessibility And Management System For Chromameter Sensor Database, Green Intell. Syst. Appl. 4 (2024) 29–40.

DOI: 10.53623/Gisa.V4i1.342

Google Scholar

[39] Ams Osram Group, Data Sheet As7341 11-Channel Multi-Spectral Digital Sensor, (2020). Https://Ams-Osram.Com/Products/Sensor-Solutions/Ambient-Light-Color-Spectral-Proximity-Sensors/Ams-As7341-11-Channel-Spectral-Color-Sensor.

Google Scholar

[41] R.A. Mancini, M.C. Hunt, Current Research In Meat Color, Meat Science 71 (2005) 100–121.

DOI: 10.1016/J.Meatsci.2005.03.003

Google Scholar

[42] M. Peyvasteh, A. Popov, A. Bykov, I. Meglinski, Meat Freshness Revealed By Visible To Near-Infrared Spectroscopy And Principal Component Analysis, J. Phys. Commun. 4 (2020) 095011.

DOI: 10.1088/2399-6528/Abb322

Google Scholar

[43] C.D. Stafford, M.J. Taylor, D.S. Dang, E.M. England, D.P. Cornforth, X. Dai, S.K. Matarneh, Spectro 1—A Potential Spectrophotometer For Measuring Color And Myoglobin Forms In Beef, Foods 11 (2022) 2091.

DOI: 10.3390/Foods11142091

Google Scholar

[44] D. Piao, M.L. Denzer, G. Mafi, R. Ramanathan, Daily Quantification Of Myoglobin Forms On Beef Longissimus Lumborum Steaks Over 7 Days Of Display By Near-Infrared Diffuse Reflectance Spectroscopy, Meat And Muscle Biology 5 (2022).

DOI: 10.22175/Mmb.12562

Google Scholar

[45] C. Ruedt, M. Gibis, J. Weiss, Meat Color And Iridescence: Origin, Analysis, And Approaches To Modulation, Comp Rev Food Sci Food Safe 22 (2023) 3366–3394.

DOI: 10.1111/1541-4337.13191

Google Scholar