Molecular Dynamics Simulation on Shocked Nanocrystalline Aluminum

Article Preview

Abstract:

The characteristics of shocked nanocrystalline aluminum are investigated by using molecular dynamics method based on the embedded atom method potential function. The result presents the particle velocity profile and the width of shock front in detail. The simulated Hugoniot relations are basically consistent with the experimental data and other molecular dynamics results. The width of shock front decreases with the particle velocity exponentially.

You have full access to the following eBook

Info:

Periodical:

Pages:

1-6

Citation:

Online since:

October 2023

Export:

Share:

Citation:

* - Corresponding Author

[1] Y.Y. Ju, L. Zhang, Molecular Dynamics Simulation of Shock Wave Propagation in Aluminum Single Crystal, Journal of Metastable and Nanocrystalline Materials 36 (2023) 1-6.

DOI: 10.4028/p-18w2oa

Google Scholar

[2] I.A. Bryukhanov, Atomistic simulation of the shock wave in copper single crystals with pre-existing dislocation network, International Journal of Plasticity 151 (2022) 103171.

DOI: 10.1016/j.ijplas.2021.103171

Google Scholar

[3] Y. Chen, Z.Y. Jian, S.F Xiao, L. Wang, X.F. Li, K. Wang, H.Q. Deng and W.Y. Hu, Molecular dynamics simulation of shock wave propagation and spall failure in single crystal copper under cylindrical impact, Appl. Phys. Express 14 (2021) 075504.

DOI: 10.35848/1882-0786/ac06de

Google Scholar

[4] Y.T. Wang, X.G. Zeng, X. Yang, T.L. Xu, Shock-induced spallation in single-crystalline tantalum at elevated temperatures through molecular dynamics modeling, Computational Materials Science 201 (2022) 110870.

DOI: 10.1016/j.commatsci.2021.110870

Google Scholar

[5] J.A. Zimmerman, J.M. Winey, and Y.M. Gupta, Elastic anisotropy of shocked aluminum single crystals: Use of molecular dynamics simulations, Phys. Rev. B, 83 (2011) 184113.

DOI: 10.1103/physrevb.83.184113

Google Scholar

[6] Q. An, R. Ravelo, T.C. Germann, W.Z. Han, S.N. Luo, D.L. Tonks, and W.A. Goddard, Shock compression and spallation of single crystal tantalum, AIP Conf. Proc., 1426 (2012) 1259-1262.

Google Scholar

[7] Y.Y. Ju, Q.M. Zhang, Z.Z. Gong, G.F. Ji, and L. Zhou. Molecular dynamics simulation of shock melting of aluminum single crystal, J. Appl. Phys., 114 (2013) 093507.

DOI: 10.1063/1.4819298

Google Scholar

[8] A. Neogi, N. Mitra, A metastable phase of shocked bulk single crystal copper: an atomistic simulation study, Sci. Rep. 7, (2017) 7337.

DOI: 10.1038/s41598-017-07809-1

Google Scholar

[9] A. Neogi, N. Mitra, Evolution of dislocation mechanisms in single-crystal Cu under shock loading in different directions, Modelling and Simulation in Materials Science and Engineering, 25 (2017) 025013.

DOI: 10.1088/1361-651x/aa5850

Google Scholar

[10] A. Neogi, N. Mitra, Shock induced deformation response of single crystal copper: Effect of crystallographic orientation, Computational Materials Science, 135 (2017) 141-151.

DOI: 10.1016/j.commatsci.2017.04.009

Google Scholar

[11] A. Neogi; L. He; N. Abdolrahim, Atomistic simulations of shock compression of single crystal and core-shell Cu@Ni nanoporous metals, J. Appl. Phys. 126 (2019) 015901.

DOI: 10.1063/1.5100261

Google Scholar

[12] A. Bisht, A. Neogi, N. Mitra, G. Jagadeesh, S. Suwas, Investigation of the elastically shock-compressed region and elastic–plastic shock transition in single-crystalline copper to understand the dislocation nucleation mechanism under shock compression. Shock Waves 29 (2019) 913-927.

DOI: 10.1007/s00193-018-00887-8

Google Scholar

[13] E.M. Bringa, A. Caro, M. Victoria, and N. Park, The atomistic modeling of wave propagation in nanocrystals, Journal of metals, 57 (2005) 67-70.

DOI: 10.1007/s11837-005-0119-9

Google Scholar

[14] W. Ma, W.J. Zhu, and F.Q. Jing, The shock-front structure of nanocrystalline aluminum, Appl. Phys. Lett., 97 (2010) 121903.

Google Scholar

[15] A.P. Gerlich, L. Yue, P.F. Mendez, and H. Zhang, Plastic deformation of nanocrystalline aluminum at high temperatures and strain rate, Acta Materialia, 58 (2010) 2176–2185.

DOI: 10.1016/j.actamat.2009.12.003

Google Scholar

[16] M.Z. Xiang, H.B. Hu, and J. Chen, Spalling and melting in nanocrystalline Pb under shock loading: Molecular dynamics studies, J. Appl. Phys., 113 (2013) 144312.

DOI: 10.1063/1.4799388

Google Scholar

[17] J. Mei, J.W. Davenport, and G.W. Fernando, Analytic embedded-atom potentials for fcc metals: Application to liquid and solid copper, Phys. Rev. B, 43 (1991) 4653.

DOI: 10.1103/physrevb.43.4653

Google Scholar

[18] LAMMPS, Sandia National Laboratories. [online], Available from: http://lammps.sandia.gov.

Google Scholar

[19] D. Chen, Structural modeling of nanocrystalline materials, Comput. Mater. Sci., 3 (1995) 327-333.

Google Scholar

[20] S.P. Marsh. LASL Shock Hugoniot Data (University of California Press, Berkeley, 1980).

Google Scholar

[21] L.V. Al'tshuler, S.B. Kormer, A.A. Bakanova, and R.F. Trunin, The isentropic compressibility of aluminum, copper, lead, and iron at high pressures, Sov. Phys. JETP, 11 (1960) 790.

Google Scholar

[22] R.F. Trunin, M. Yu. Belyakova, M.V. Zhernokletov, and Y.N. Sutulov, Izv. Akad. Nauk SSSR, Fiz. Zemli, Shock compression of metal alloys, 2 (1991) 99.

Google Scholar

[23] D.K. Belashchenkoa, A.V. Vorotyagina, and B.R. Gelchinsky, Computer simulation of aluminum in the high-pressure range, High Temperature, 49 (2011) 656.

Google Scholar

[24] L. Koči, E.M. Bringa, D.S. Ivanov, J. Hawreliak, J. McNaney, A. Higginbotham, L.V. Zhigilei, A.B. Belonoshko, B.A. Remington, and R. Ahuja, Simulation of shock-induced melting of Ni using molecular dynamics coupled to a two-temperature model, Phys. Rev. B, 74 (2006) 012101.

DOI: 10.1103/physrevb.74.012101

Google Scholar

[25] A. Kubota, D.B. Reisman, and W.G. Wolfer, Dynamic strength of metals in shock deformation, Appl. Phys. Lett., 88 (2006) 241924.

Google Scholar

[26] J.A. Moriarty, D.A. Young, and M. Ross, Theoretical study of the aluminum melting curve to very high pressure, Phys. Rev. B, 30 (1984) 578.

DOI: 10.1103/physrevb.30.578

Google Scholar

[27] R.F. Trunin. The properties of condensed matter under high pressure and high temperature Translated by J. W. Han (Institute of Fluid Physics, CAEP, Mianyang, 1996) pp.40-52. (in Chinese)

Google Scholar