Effect of the Degree of Filling on Mechanical Properties of Polymeric Specimens from Polyethylene Terephthalate Glycol and Polylactic Acid Produced by 3D Printing

Article Preview

Abstract:

Based 3D printing has become very popular in recent years due to the emergence of projects for low-cost machines, making the technology very accessible. In view of this, some polymers, in general, in thermoplastic filaments, are placed on the market for application in this type of printing technique, making it increasingly necessary to develop research for the characterization of materials to provide information on physical, thermal and mechanical properties. For the development of this work, the polymer poly(ethylene glycol terephthalate) (PETG) was used for a comparative study in relation to poly(lactic acid) (PLA). PETG is obtained by adding modified glycol to the material composition during the polymerization process. It consists of a polymer with a glass transition temperature close to 80°C, with mechanical properties similar to those of PET, with the advantages of notable tenacity, flexibility, and high processing capacity, and PLA is a polymer synthesized from corn sugar, potatoes, and sugar cane, through bioconversion and polymerization. PLA presents biocompatibility, biodegradability, and biological absorption, presenting good mechanical properties, processability, thermal stability and low environmental impact. Mechanical tests of compressive strength and flexural strength were carried out. In the compressive strength test, the specimen with 100% filling presented a deformation 76% greater than the specimen with 50% filling. This can be attributed to the mechanical property of the PETG polymer, as it is very ductile, thus facilitating the processability of this artifact. The mechanical flexural strength tests carried out with the PLA polymer with the highest filling percentages (100% and 50%) showed less deformation until failure, characterizing them as more ductile materials. On the other hand, specimens with 30% filling showed ~215% greater deformation than specimens with 100% filling. With this, it can be seen that PLA has greater flexibility and tenacity for fillings of low percentages, due to the internal spacing absorbing the impact of loads. The PLA polymer showed better mechanical properties, such as Young's modulus, ductility and more satisfactory resistance when compared to the PETG polymer. As well as the synthesis of PLA, it characterizes the process in a more sustainable way, as it is a biopolymer, in addition to its excellent processability.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: A review and prospective, Composites Part B: Engineering. Vol. 110 (2017) 442-458.

DOI: 10.1016/j.compositesb.2016.11.034

Google Scholar

[2] A. Barazanchi, K. C. Li, B. Al-Amleh, K. Lyons, and J. N. Waddell, "Additive technology: update on current materials and applications in dentistry," Journal of Prosthodontics, vol. 26, no. 2, p.156–163, 2017.

DOI: 10.1111/jopr.12510

Google Scholar

[3] M. Vukicevic, B. Mosadegh, J. K. Min, and S. H. Little, "Cardiac 3D printing and its future directions," JACC: Cardiovascular Imaging. Vol. 10 (2017), p.171–184.

DOI: 10.1016/j.jcmg.2016.12.001

Google Scholar

[4] H. N. Mai, K. B. Lee, and D. H. Lee. Fit of interim crowns fabricated using photopolymer-jetting 3D printing, The Journal of Prosthetic Dentistry. Vol. 118 (2017), p.208–215.

DOI: 10.1016/j.prosdent.2016.10.030

Google Scholar

[5] L. Lin, Y. Fang, Y. Liao, G. Chen, C. Gao, and P. Zhu, "3D printing and digital processing techniques in dentistry: a review of literature," Advanced Engineering Materials. Vol. 21 (2019), p.1801013.

DOI: 10.1002/adem.201801013

Google Scholar

[6] M. Spoerk, C. Holzer, J. Gonzalez-Gutierrez. Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage, J Appl Polym Sci. Vol. 137 (2020), p.12.

DOI: 10.1002/app.48545

Google Scholar

[7] A. Bhatia, A.K. Sehgal. Additive manufacturing materials, methods and applications: a review Mater Today: Proc. (2021).

Google Scholar

[8] K.B. Mustapha, K.M. Metwalli. A review of fused deposition modelling for 3D printing of smart polymeric materials and composites. Eur Polym J. Vol. 156 (2021), p.110591.

DOI: 10.1016/j.eurpolymj.2021.110591

Google Scholar

[9] J.R.H.S. Agueda, Q. Chen, R.D. Maalihan. 3D printing of biomedically relevant polymer materials and biocompatibility, MRS Commun. Vol. 11 (2021), pp.197-212

DOI: 10.1557/s43579-021-00038-8

Google Scholar

[10] S. Park, K. Fu. Polymer-based filament feedstock for additive manufacturing Compos Sci Technol. Vol. 213 (2021), p.108876.

DOI: 10.1016/j.compscitech.2021.108876

Google Scholar

[11] N. G. TANIKELLA, B. WITTBRODT, J. M. PEARCE. Tensile strength of commercial polymer materials for fused filament fabrication 3D printing‖, Additive Manufacturing. Vol. 15 (2017), pp.40-47.

DOI: 10.1016/j.addma.2017.03.005

Google Scholar

[12] J. M. Sipe, N. Bossa, W. Berger, N. V. Windheim, K. Gall, M. R. Wiesner. Science of The Total Environment. Vol. 814 (2022), p.152460.

DOI: 10.1016/j.scitotenv.2021.152460

Google Scholar

[13] C. Aversa, M. Barletta, G. Cappiello, A. Gisario. Compatibilization strategies and analysis of morphological features of poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: A state-of-art review. Vol. 173 (2022), p.111304.

DOI: 10.1016/j.eurpolymj.2022.111304

Google Scholar

[14] W. Xu, S. Jambhulkar, Y. Zhu, D. Ravichandran, M. Kakarla, B. Vernon, D. G. Lott, J. L. Cornella, O. Shefi, G. Miquelard-Garnier, Y. Yang, K. Song. 3D printing for polymer/particle-based processing: A review, Composites Part B: Engineering. Vol. 233 (2021), p.109102.

DOI: 10.1016/j.compositesb.2021.109102

Google Scholar

[15] L. Musa, N. K. Kumar, S. Z. A. Rahim, M. S. M. Rasidi, A. E. W. Rennie, R. Rahman, A. Y. Kanani, A. A. Azmi. A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling, Journal of Materials Research and Technology. Vol. 20 (2022), pp.2841-2858.

DOI: 10.1016/j.jmrt.2022.08.057

Google Scholar

[16] I. Karakurt, L. Lin. 3D printing technologies: techniques, materials, and post-processing, Current Opinion in Chemical Engineering. Vol. 28 (2020), pp.134-143.

DOI: 10.1016/j.coche.2020.04.001

Google Scholar

[17] C. Casavola, A. Cazzato, V. Moramarco. Residual stress measurement in Fused Deposition Modelling parts‖, Polymer Testing. Vol.58 (2017), pp.249-255.

DOI: 10.1016/j.polymertesting.2017.01.003

Google Scholar

[18] S. Palaniyappan, D. Veeman, K. Rajkumar, K. Vishal, R. Kishore, L. Natrayan. Photovoltaic industrial waste as substitutional reinforcement in the preparation of additively manufactured acrylonitrile butadiene styrene composite, Arabian Journal for Science and Engineering. Vol. 47 (2022), p.15851–15863.

DOI: 10.1007/s13369-022-06806-5

Google Scholar

[19] M. Wang, Y. Wu, Y. D. Li. Progress in toughening Poly(Lactic Acid) with renewable poly-mers‖, Polymer Review. Vol. 57 (2017), pp.557-593.

DOI: 10.1080/15583724.2017.1287726

Google Scholar

[20] C. Vălean, L. Marșavina, M. Mărghitaș, E. Linul, J. Razavi, F. Berto. Effect of manufacturing parameters on tensile properties of FDM printed specimens, Procedia Structural Integrity. Vol. 26 (2020), pp.313-320.

DOI: 10.1016/j.prostr.2020.06.040

Google Scholar

[21] M. Alssabbagh, A. A. Tajuddin, M. Abdulmanap. Evaluation of 3D printing mate-rials for fabrication of a novel multi-functional 3D thyroid phantom for medical dosimetry and image quali-ty‖, Radiation Physics and Chemistry. Vol. 135 (2017), pp.106-112.

DOI: 10.1016/j.radphyschem.2017.02.009

Google Scholar

[22] K. J. Jem, B. Tan. The development and challenges of poly (lactic acid) and poly (glycolic acid), Advanced Industrial and Engineering Polymer Research. Vol. 3 (2020), pp.60-70.

DOI: 10.1016/j.aiepr.2020.01.002

Google Scholar

[23] H. Bai, H. Xiu, J. Gao. Tailoring impact toughness of poly(L-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix‖, Applied Materials & Interfaces. Vol.4 (2012), pp.897-905.

DOI: 10.1021/am201564f

Google Scholar

[24] S. R. Rajpurohit, H. K. Dave. Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer, The International Journal of Advanced Manufacturing Technology. Vol. 101 (2019), p.1525–1536.

DOI: 10.1007/s00170-018-3047-x

Google Scholar

[25] B. S. Heidari, P. Chen, R. Ruan, S. M. Davachi, H. Al-Salami, E. D. J. Pardo, M. Zheng, B. Doyle. A novel biocompatible polymeric blend for applications requiring high toughness and tailored degradation rate, J. Mater. Chem. B. Vol. 9 (2021), pp.2532-2546.

DOI: 10.1039/d0tb02971h

Google Scholar

[26] S. R. Rajpurohit, H. K. Dave. Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer, The International Journal of Advanced Manufacturing Technology. Vol. 101 (2019), p.1525–1536.

DOI: 10.1007/s00170-018-3047-x

Google Scholar

[27] M.N. Saadawi. Polymer-polymer composites: mechanical properties of inter-reinforced thermoplastics, Materials Science and Engineering, Master of Science (2019), Penn State University Libraries.

Google Scholar

[28] A. Ronca, V. Abbate, D. F. Redaelli, F. Alexander Storm, G. Cesaro, C. Capitani, A. Sorrentino, G. Colombo, P. Fraschini, L. Ambrosio. A Comparative Study for Material Selection in 3D Printing of Scoliosis Back Brace, Materials. Vol. 15 (2022), p.5724.

DOI: 10.3390/ma15165724

Google Scholar

[29] C. G. Amza, A. Zapciu, G. Constantin, F. Baciu, M. I. Vasile. Enhancing mechanical properties of polymer 3D printed parts, Polymers. Vol. 13 (2021), p.562.

DOI: 10.3390/polym13040562

Google Scholar

[30] A. Özen, D. Auhl, C. Völlmecke, J. Kiendl, B. E. Abali. Optimization of manufacturing parameters and tensile specimen geometry for fused deposition modeling (FDM) 3D-printed PETG, Materials. Vol. 14 (2021), p.2556.

DOI: 10.3390/ma14102556

Google Scholar

[31] M. Ramesh, L. Rajeshkumar, D. Balaji. Influence of process parameters on the properties of additively manufactured fiber-reinforced polymer composite materials: a review, Journal of Materials Engineering and Performance. Vol. 30 (2021), p.4792–4807.

DOI: 10.1007/s11665-021-05832-y

Google Scholar

[32] P. K. Mishra, P. Senthil, S. Adarsh, M. P. Anoop. An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts. Composites Communications, Vol. 24, p.100605, 2021.

DOI: 10.1016/j.coco.2020.100605

Google Scholar

[33] V. S. Rathor, A. Chouldhary, V. Singh. Investigating Abrasive Flow Finishing of 3D Printed Meso Scale Channel. IJRESM, Vol. 4, p.206–211, 2021.

Google Scholar

[34] A. Martinez, D. L. de Souza, D. M. dos Santos, L. G. Pedroti, J. C. Carlo, M. A. D. Martins. Avaliação do comportamento mecânico dos polímeros ABS e PLA em impressão 3D visando simulação de desempenho estrutural, Gestão e Tecnologia de Projetos. Vol. 14 (2019), pp.125-141.

DOI: 10.11606/gtp.v14i1.148289

Google Scholar

[35] N. G. Chander, V. Jayaraman, V. Sriram. Comparison of ISO and ASTM standards in determining the flexural strength of denture base resin, Eur Oral Res. Vol 53 (2019), pp.137-40.

DOI: 10.26650/eor.20190072

Google Scholar

[36] M-H. Hsueh, C.-J. Lai, S-H. Wang, Y-S. Zeng, C-H. Hsieh, C-Y. Pan, W-Ch. Huang. Effect of printing parameters on the thermal and mechanical properties of 3d-printed pla and petg, using fused deposition modeling, Polymers. Vol. 13 (2021), p.1758.

DOI: 10.3390/polym13111758

Google Scholar

[37] G. Holcomb, E. B. Caldona, X. Cheng, R. C. Advincula. On the optimized 3D printing and post-processing of PETG materials, MRS Communications. Vol. 12 (2022), p.381–387.

DOI: 10.1557/s43579-022-00188-3

Google Scholar

[38] V. Nagarajan, A. K. Mohanty, M. Misra. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance, ACS Sustainable Chem. Eng. Vol. 4 (2016), p.2899–2916.

DOI: 10.1021/acssuschemeng.6b00321

Google Scholar