[1]
X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: A review and prospective, Composites Part B: Engineering. Vol. 110 (2017) 442-458.
DOI: 10.1016/j.compositesb.2016.11.034
Google Scholar
[2]
A. Barazanchi, K. C. Li, B. Al-Amleh, K. Lyons, and J. N. Waddell, "Additive technology: update on current materials and applications in dentistry," Journal of Prosthodontics, vol. 26, no. 2, p.156–163, 2017.
DOI: 10.1111/jopr.12510
Google Scholar
[3]
M. Vukicevic, B. Mosadegh, J. K. Min, and S. H. Little, "Cardiac 3D printing and its future directions," JACC: Cardiovascular Imaging. Vol. 10 (2017), p.171–184.
DOI: 10.1016/j.jcmg.2016.12.001
Google Scholar
[4]
H. N. Mai, K. B. Lee, and D. H. Lee. Fit of interim crowns fabricated using photopolymer-jetting 3D printing, The Journal of Prosthetic Dentistry. Vol. 118 (2017), p.208–215.
DOI: 10.1016/j.prosdent.2016.10.030
Google Scholar
[5]
L. Lin, Y. Fang, Y. Liao, G. Chen, C. Gao, and P. Zhu, "3D printing and digital processing techniques in dentistry: a review of literature," Advanced Engineering Materials. Vol. 21 (2019), p.1801013.
DOI: 10.1002/adem.201801013
Google Scholar
[6]
M. Spoerk, C. Holzer, J. Gonzalez-Gutierrez. Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage, J Appl Polym Sci. Vol. 137 (2020), p.12.
DOI: 10.1002/app.48545
Google Scholar
[7]
A. Bhatia, A.K. Sehgal. Additive manufacturing materials, methods and applications: a review Mater Today: Proc. (2021).
Google Scholar
[8]
K.B. Mustapha, K.M. Metwalli. A review of fused deposition modelling for 3D printing of smart polymeric materials and composites. Eur Polym J. Vol. 156 (2021), p.110591.
DOI: 10.1016/j.eurpolymj.2021.110591
Google Scholar
[9]
J.R.H.S. Agueda, Q. Chen, R.D. Maalihan. 3D printing of biomedically relevant polymer materials and biocompatibility, MRS Commun. Vol. 11 (2021), pp.197-212
DOI: 10.1557/s43579-021-00038-8
Google Scholar
[10]
S. Park, K. Fu. Polymer-based filament feedstock for additive manufacturing Compos Sci Technol. Vol. 213 (2021), p.108876.
DOI: 10.1016/j.compscitech.2021.108876
Google Scholar
[11]
N. G. TANIKELLA, B. WITTBRODT, J. M. PEARCE. Tensile strength of commercial polymer materials for fused filament fabrication 3D printing‖, Additive Manufacturing. Vol. 15 (2017), pp.40-47.
DOI: 10.1016/j.addma.2017.03.005
Google Scholar
[12]
J. M. Sipe, N. Bossa, W. Berger, N. V. Windheim, K. Gall, M. R. Wiesner. Science of The Total Environment. Vol. 814 (2022), p.152460.
DOI: 10.1016/j.scitotenv.2021.152460
Google Scholar
[13]
C. Aversa, M. Barletta, G. Cappiello, A. Gisario. Compatibilization strategies and analysis of morphological features of poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: A state-of-art review. Vol. 173 (2022), p.111304.
DOI: 10.1016/j.eurpolymj.2022.111304
Google Scholar
[14]
W. Xu, S. Jambhulkar, Y. Zhu, D. Ravichandran, M. Kakarla, B. Vernon, D. G. Lott, J. L. Cornella, O. Shefi, G. Miquelard-Garnier, Y. Yang, K. Song. 3D printing for polymer/particle-based processing: A review, Composites Part B: Engineering. Vol. 233 (2021), p.109102.
DOI: 10.1016/j.compositesb.2021.109102
Google Scholar
[15]
L. Musa, N. K. Kumar, S. Z. A. Rahim, M. S. M. Rasidi, A. E. W. Rennie, R. Rahman, A. Y. Kanani, A. A. Azmi. A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling, Journal of Materials Research and Technology. Vol. 20 (2022), pp.2841-2858.
DOI: 10.1016/j.jmrt.2022.08.057
Google Scholar
[16]
I. Karakurt, L. Lin. 3D printing technologies: techniques, materials, and post-processing, Current Opinion in Chemical Engineering. Vol. 28 (2020), pp.134-143.
DOI: 10.1016/j.coche.2020.04.001
Google Scholar
[17]
C. Casavola, A. Cazzato, V. Moramarco. Residual stress measurement in Fused Deposition Modelling parts‖, Polymer Testing. Vol.58 (2017), pp.249-255.
DOI: 10.1016/j.polymertesting.2017.01.003
Google Scholar
[18]
S. Palaniyappan, D. Veeman, K. Rajkumar, K. Vishal, R. Kishore, L. Natrayan. Photovoltaic industrial waste as substitutional reinforcement in the preparation of additively manufactured acrylonitrile butadiene styrene composite, Arabian Journal for Science and Engineering. Vol. 47 (2022), p.15851–15863.
DOI: 10.1007/s13369-022-06806-5
Google Scholar
[19]
M. Wang, Y. Wu, Y. D. Li. Progress in toughening Poly(Lactic Acid) with renewable poly-mers‖, Polymer Review. Vol. 57 (2017), pp.557-593.
DOI: 10.1080/15583724.2017.1287726
Google Scholar
[20]
C. Vălean, L. Marșavina, M. Mărghitaș, E. Linul, J. Razavi, F. Berto. Effect of manufacturing parameters on tensile properties of FDM printed specimens, Procedia Structural Integrity. Vol. 26 (2020), pp.313-320.
DOI: 10.1016/j.prostr.2020.06.040
Google Scholar
[21]
M. Alssabbagh, A. A. Tajuddin, M. Abdulmanap. Evaluation of 3D printing mate-rials for fabrication of a novel multi-functional 3D thyroid phantom for medical dosimetry and image quali-ty‖, Radiation Physics and Chemistry. Vol. 135 (2017), pp.106-112.
DOI: 10.1016/j.radphyschem.2017.02.009
Google Scholar
[22]
K. J. Jem, B. Tan. The development and challenges of poly (lactic acid) and poly (glycolic acid), Advanced Industrial and Engineering Polymer Research. Vol. 3 (2020), pp.60-70.
DOI: 10.1016/j.aiepr.2020.01.002
Google Scholar
[23]
H. Bai, H. Xiu, J. Gao. Tailoring impact toughness of poly(L-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix‖, Applied Materials & Interfaces. Vol.4 (2012), pp.897-905.
DOI: 10.1021/am201564f
Google Scholar
[24]
S. R. Rajpurohit, H. K. Dave. Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer, The International Journal of Advanced Manufacturing Technology. Vol. 101 (2019), p.1525–1536.
DOI: 10.1007/s00170-018-3047-x
Google Scholar
[25]
B. S. Heidari, P. Chen, R. Ruan, S. M. Davachi, H. Al-Salami, E. D. J. Pardo, M. Zheng, B. Doyle. A novel biocompatible polymeric blend for applications requiring high toughness and tailored degradation rate, J. Mater. Chem. B. Vol. 9 (2021), pp.2532-2546.
DOI: 10.1039/d0tb02971h
Google Scholar
[26]
S. R. Rajpurohit, H. K. Dave. Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer, The International Journal of Advanced Manufacturing Technology. Vol. 101 (2019), p.1525–1536.
DOI: 10.1007/s00170-018-3047-x
Google Scholar
[27]
M.N. Saadawi. Polymer-polymer composites: mechanical properties of inter-reinforced thermoplastics, Materials Science and Engineering, Master of Science (2019), Penn State University Libraries.
Google Scholar
[28]
A. Ronca, V. Abbate, D. F. Redaelli, F. Alexander Storm, G. Cesaro, C. Capitani, A. Sorrentino, G. Colombo, P. Fraschini, L. Ambrosio. A Comparative Study for Material Selection in 3D Printing of Scoliosis Back Brace, Materials. Vol. 15 (2022), p.5724.
DOI: 10.3390/ma15165724
Google Scholar
[29]
C. G. Amza, A. Zapciu, G. Constantin, F. Baciu, M. I. Vasile. Enhancing mechanical properties of polymer 3D printed parts, Polymers. Vol. 13 (2021), p.562.
DOI: 10.3390/polym13040562
Google Scholar
[30]
A. Özen, D. Auhl, C. Völlmecke, J. Kiendl, B. E. Abali. Optimization of manufacturing parameters and tensile specimen geometry for fused deposition modeling (FDM) 3D-printed PETG, Materials. Vol. 14 (2021), p.2556.
DOI: 10.3390/ma14102556
Google Scholar
[31]
M. Ramesh, L. Rajeshkumar, D. Balaji. Influence of process parameters on the properties of additively manufactured fiber-reinforced polymer composite materials: a review, Journal of Materials Engineering and Performance. Vol. 30 (2021), p.4792–4807.
DOI: 10.1007/s11665-021-05832-y
Google Scholar
[32]
P. K. Mishra, P. Senthil, S. Adarsh, M. P. Anoop. An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts. Composites Communications, Vol. 24, p.100605, 2021.
DOI: 10.1016/j.coco.2020.100605
Google Scholar
[33]
V. S. Rathor, A. Chouldhary, V. Singh. Investigating Abrasive Flow Finishing of 3D Printed Meso Scale Channel. IJRESM, Vol. 4, p.206–211, 2021.
Google Scholar
[34]
A. Martinez, D. L. de Souza, D. M. dos Santos, L. G. Pedroti, J. C. Carlo, M. A. D. Martins. Avaliação do comportamento mecânico dos polímeros ABS e PLA em impressão 3D visando simulação de desempenho estrutural, Gestão e Tecnologia de Projetos. Vol. 14 (2019), pp.125-141.
DOI: 10.11606/gtp.v14i1.148289
Google Scholar
[35]
N. G. Chander, V. Jayaraman, V. Sriram. Comparison of ISO and ASTM standards in determining the flexural strength of denture base resin, Eur Oral Res. Vol 53 (2019), pp.137-40.
DOI: 10.26650/eor.20190072
Google Scholar
[36]
M-H. Hsueh, C.-J. Lai, S-H. Wang, Y-S. Zeng, C-H. Hsieh, C-Y. Pan, W-Ch. Huang. Effect of printing parameters on the thermal and mechanical properties of 3d-printed pla and petg, using fused deposition modeling, Polymers. Vol. 13 (2021), p.1758.
DOI: 10.3390/polym13111758
Google Scholar
[37]
G. Holcomb, E. B. Caldona, X. Cheng, R. C. Advincula. On the optimized 3D printing and post-processing of PETG materials, MRS Communications. Vol. 12 (2022), p.381–387.
DOI: 10.1557/s43579-022-00188-3
Google Scholar
[38]
V. Nagarajan, A. K. Mohanty, M. Misra. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance, ACS Sustainable Chem. Eng. Vol. 4 (2016), p.2899–2916.
DOI: 10.1021/acssuschemeng.6b00321
Google Scholar