Depth Treatment of Engineering Applications Wastewater Using a Sequential Heterogeneous Fenton and Biodegradation Approach: Review

Article Preview

Abstract:

After treating industrial wastewater efficiently and adequately to avoid harm from it being reused and disposed of in the past, the majority of countries in the world have moved to integrated planning and sound management to reuse it. The efficiency of water treatment and reuse depends on a set of environmental standards and controls that are connected to the nature of this water and the eventual purpose of treating and reusing it in order to prevent the environmental repercussions of an integrated method. A framework that assures environmental protection must be employed for this treatment and reuse. The emphasis is on developing reusable resources in order to transition from a linear to a circular economy. Finding the primary pathway for heterogeneous and homogeneous catalysis to pollutant degradation, optimizing the layout for integrating Fenton processes into large-scale treatment plants, particularly its coupling with biological treatment, and analyzing or enhancing heterogeneous catalyst lifetime are all important. are some of the main challenges mentioned in this research. This study intends to analyze the efficacy of the Fenton process in treating water in an effective and economical way compared to other conventional techniques.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-50

Citation:

Online since:

October 2023

Export:

Share:

Citation:

* - Corresponding Author

[1] Mook W. T., Chakrabarti M. H., Aroua M. K. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review Desalination. 2 (2012) 85-113.

DOI: 10.1016/j.desal.2011.09.029

Google Scholar

[2] Turhan K. Durukan I., Ozturkcan S. A., Turgut Z. Decolorization of Textile Basic Dye in Aqueous Solution By Ozone Dyes Pigment. 92 (2012) 897-901.

DOI: 10.1016/j.dyepig.2011.07.012

Google Scholar

[3] Kim K., HIhm S. K. Heterogeneous Catalytic Wet Air Oxidation of Refractory Organic Pollutants in Industrial Wastewaters: A review J. Hazard. Mater. 186(2011) 16-34.

DOI: 10.1016/j.jhazmat.2010.11.011

Google Scholar

[4] Yang G. C.,   Li C. J. Electrofi Literation of Silica Nanoparticle-containing Wastewater Using Tubular Ceramic Membranes. Sep. Purif. Technol. 58 (2007) 159-165.

DOI: 10.1016/j.seppur.2007.07.019

Google Scholar

[5] Focus technology go ltd. Water Treatment System (Active Carbon Filter) Zhangjiagang Beyond Machinery Co. Ltd (2012).

Google Scholar

[6] Chu L., Wang J. Dong J., Liu H., Sun X. Treatment of Coking Wastewater by an Advanced Fenton Oxidation Process Using Iron Powder and Hydrogen Peroxide. Chemosphere. 86 (2012) 409-414.

DOI: 10.1016/j.chemosphere.2011.09.007

Google Scholar

[7] Li S., Zhou P., Yao P. Preparation of O-Carboxymethyl-N-Trimethyl Chitosan Chloride and Flocculation of the Wastewater in Sugar Refinery J. Appl. Polym. Sci. 116 (2010) 2742-2748.

DOI: 10.1002/app.31899

Google Scholar

[8] Grilli S., Piscitelli D., Mattioli D., Casu S., Spagni A. Textile Wastewater Treatment in a Bench-scale Anaerobic-biofilm Anoxic-aerobic Membrane Bioreactor Combined with Nanofiltration J. Environ. Sci. Heal A-Tox. Hazard. Subst. Environ. Eng. 46 (2011) 1512-1518.

DOI: 10.1080/10978526.2011.609078

Google Scholar

[9] Fibbi D., Doumett S., Lepri L., Checchini L., Gonnelli C., Coppini E., Bubba M. D. Distribution and Mass Balance of Hexavalent and Trivalent Chromium in a Subsurface, Horizontal Flow (SF-h) Constructed Wetland Operating as Post-treatment of Textile Wastewater for Water reuseJ. Hazard. Mater. 199 (2012) 200-209 EOF216 EOF.

DOI: 10.1016/j.jhazmat.2011.10.089

Google Scholar

[10] Wu W. E., Ge H. G., Zhang K. Wastewater biological treatment technology. Chemical Industry Press (CIP) Publishing: BeiJing, In Chinese. (2003)

Google Scholar

[11] Ahmed F. N., Lan C. Q. Treatment of Landfill Leachate Using Membrane Bioreactors: A Review Desalination. 287 (2012) 41-54.

DOI: 10.1016/j.desal.2011.12.012

Google Scholar

[12] Herney-ramirez, Vicente M.A., Madeira L.M., 2010. Heterogeneous Photo-Fenton Oxidation with Pillared Clay-based Catalysts for Wastewater Treatment: A review Appl. Catal., B. 98 (2010) 10-26.

DOI: 10.1016/j.apcatb.2010.05.004

Google Scholar

[13] Van den Berg M., Birnbaum L, Bosveld ATC.Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife.Environ. Health Perspect. 106 (1998)775-792.

DOI: 10.1289/ehp.98106775

Google Scholar

[14] Pope C. N. Organophosphorus pesticides: Do they all have the same Mechanism of Toxicity? J. Toxicol. Env. Heal. B. 2 (1999) 161-181.

Google Scholar

[15] Mohammadi L., Rahdar A., Bazrafshan E. Petroleum Hydrocarbon Removal from Wastewaters: A Review. 134 (2020).

Google Scholar

[16] Fujishima A., Zhang X., Tryk D. A. TiO2 Photo catalysis and Related Surface Phenomena. Surf. Sci. Rep. 63(2008) 515-582.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[17] Gogate P. R., Pandit A. B. A Review of Imperative Technologies for Wastewater Treatment I: Oxidation Technologies at Ambient Conditions Adv. in Environ. Res. 8 (2004)501-551.

DOI: 10.1016/s1093-0191(03)00032-7

Google Scholar

[18] Pirkanniemi K., Metsärinne S., Sillanpää M. Degradation of EDTA and Novel Complexing Agents in Pulp and Paper Mill Process and Wastewaters by Fenton's Reagent. J. Hazard. Mater. 147 (2007) 556-561.

DOI: 10.1016/j.jhazmat.2007.01.050

Google Scholar

[19] Fernandez-ibanez P .,Blanco J., Malato S. Application of the Colloidal Stability of TiO2 Particles for Recovery and Reuse in Solar Photocatalysis.Water Res. 37 (2003) 3180-3188.

DOI: 10.1016/s0043-1354(03)00157-x

Google Scholar

[20] Doll T. E., Frimmel F. H. Cross-flow Microfiltration with Periodical Back-washing for Photo catalytic Degradation of Pharmaceutical and Diagnostic Residues-evaluation of the Long-term Stability of the Photo. 39 (2005) 847-854.

DOI: 10.1016/j.watres.2004.11.029

Google Scholar

[21] Yetis M., Gu Èndu Èz U., Eroglu I. Photoproduction of Hydrogen from Sugar Refinery Wastewater by Rhodobacter sphaeroides O.U. 001, Int. J. Hydrogen Energ. 25(2000) 1035-1041.

DOI: 10.1016/s0360-3199(00)00027-6

Google Scholar

[22] Lin S. H. Chuang T. S. Wet Air Oxidation and Activated Sludge Treatment of Phenolic Wastewater. Environ. Sci. Health A. 29(1994) 547-564.

Google Scholar

[23] Mantzavinos D., Hellenbrand R., Metcalfe I. S., Livingston A. G. Partial Wet Oxidation of P-coumaric Acid: Oxidation Intermediates, Reaction Pathways and Implications for Wastewater Treatment Water Res. 30 (1996) 2296-92976.

DOI: 10.1016/s0043-1354(96)00202-3

Google Scholar

[24] Trujillo D., Font X., Sanchez A. Use of Fenton Reaction for the Treatment of Leachate from Composting of Different Wastes J. Hazard. Mater. B. 138 (2006)201-204.

DOI: 10.1016/j.jhazmat.2006.05.053

Google Scholar

[25] Navalon S., Alvaro M., Garcia H., 2010. Heterogeneous Fenton Catalysts Based on Clays, Silicas and Zeolites Appl. Catal., B. 99 (2010)1-26.

DOI: 10.1016/j.apcatb.2010.07.006

Google Scholar

[26] Deng Y., Englehardt J . D., 2006. Treatment of Landfill Leachate by the Fenton ProcessWater Res. 40 (2006) 3683-3694.

DOI: 10.1016/j.watres.2006.08.009

Google Scholar

[27] Yili Fang, Weizhao Yin, Yanbin Jiang, H. Ge, Ping Li, Jinhua Wu. Depth treatment of coal-chemical engineering wastewater by a cost-effective sequential heterogeneous Fenton and biodegradation process. Enginering Environmental Science and Pollution Research. 25 (2018) 13118-13126.

DOI: 10.1007/s11356-018-1571-8

Google Scholar

[28] Yu Q. Y. Advances in the treatment of printing and dyeing wastewater. Industrial Safety and Environmental Protection. 37 (2011) 41-43In Chinese.

Google Scholar

[29] Fongsatitkul P., Elefsiniotis P., Yamasmit A., Yamasmit N. Use of Sequencing Batch Reactors and Fenton's Reagent to Treat a Wastewater from a Textile Industry Biochem. Eng. J. 21(2004) 213-220.

DOI: 10.1016/j.bej.2004.06.009

Google Scholar

[30] Yang D. M., Wang B. Application of advanced oxidation processes in papermaking wastewater treatment China pulp and paper. 29(2010) 69-73In Chinese.

Google Scholar

[31] Leahy J.G., Colwell R. R. Microbial-Degradation of Hydrocarbons in the Environment. Microbiol. R. 54 (1990) 305-315.

DOI: 10.1128/mr.54.3.305-315.1990

Google Scholar

[32] Scott J. P. Ollis D. F. Integration of Chemical and Biological Oxidation Processes For Water Treatment: Review and Recommendations Environ. Prog. 14 (1995) 88-103.

DOI: 10.1002/ep.670140212

Google Scholar

[33] Peng Y., Hou H.,Wang S., Cui Y., Zhiguo Y. Nitrogen and Phosphorus Removal in Pilot-Scale Anaerobic-Anoxic Oxidation Ditch SystemJ Environ Sci 20 (2008) 398-403.

DOI: 10.1016/s1001-0742(08)62070-7

Google Scholar

[34] Kassab G., Halalsheh M., Klapwijk A., Fayyad M. Van, LierJ. B., 2010. Sequential Anaerobic-Aerobic Treatment for Domestic Wastewater- A Review. Bioresour. Technol. 101(2010) 3299 - 3310.

DOI: 10.1016/j.biortech.2009.12.039

Google Scholar

[35] Ka-car Y., Alpay E., Ceylan V. K. Pretreatment of Afyon Alcaloide Factory's Wastewater by Wet Air Oxidation (WAO), Water Res. 37(2003)1170-1176.

DOI: 10.1016/s0043-1354(02)00448-7

Google Scholar

[36] Patterson J. W. Industrial wastewater treatment technology Second Edition. Butterworth Publishers, Stoneham, MA. USA. (2008)

Google Scholar

[37] Matavos-Aramyan S. Moussavi M., Advances in Fenton and Fenton Based Oxidation Processes for Industrial Effluent Contaminants Control-A Review. 2 (2017) 1-18

DOI: 10.19080/ijesnr.2017.02.555594

Google Scholar

[38] Schoneich C. 2022, Advanced Oxidation Processes in Pharmaceutical Formulations: Photo-Fenton Degradation of Peptides and Proteins. International Journal of Molecular Science. 23 (2022) 1-9.

DOI: 10.3390/ijms23158262

Google Scholar

[39] Bayar, S., Erdogan, M, 2019, Removal of COD and color from reactive red 45 azo dye wastewater using fenton and fenton-like oxidation processes: kinetic studies.17 (2019) 1-13.

DOI: 10.15666/aeer/1702_15171529

Google Scholar