Preparation and Characterization of an In Situ Hydrogel of Self-Assembly Type I Collagen from Shark Skin/Methylcellulose for Central Nerve System Regeneration

Article Preview

Abstract:

Central nerve system degeneration is a crucial problem for many patients. To use an in situ hydrogel formation is an attractive method to treat that problem. An in situ hydrogel was developed for central nerve system regeneration. An acid soluble collagen (ASC) and pepsin soluble collagen (PSC) from the shark skin of the brownbanded bamboo shark (Chiloscyllium punctatum) were used to produce hybridized hydrogels by the biomimetic approach. Collagen was mixed with methylcellulose and used 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinker. The hydrogels had various ratios of collagen:methylcellulose: 100:0, 70:30, 50:50, 30:70, and 0:100. Structural, molecular, and morphological organization were characterized and observed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The DSC results showed that the peak of denatured collagen fibril shifted higher in a 30:70 ratio of collagen:methylcellulose in both ASC and PSC. The FT-IR results indicated that the structure of hydrogels from both ASC and PSC were organized into complex structures. The SEM results demonstrated that the collagen fibril networks were formed in both ASC and PSC hydrogels. The results indicated that the samples containing collagen promise to be an in situ hydrogel for central nerve regeneration.

You might also be interested in these eBooks

Info:

Pages:

14-29

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Holinkski, F. Schmidt, S.B. Dashlslett, L. Harms, G. Bohner, H. Olze, MRI Study: Objective Olfactory Function and CNS Pathologies in Patients with Multiple Sclerosis. Eur Neurol. 72(2014)157-162.

DOI: 10.1159/000362165

Google Scholar

[2] Q. Yang, Z. Wu, J.K. Hadden, M.A. Odem, Y. Zuo, R.J. Crook, J.A. Frost, E.T. Walters, Persistent pain after spinal cord injury is maintained by primary afferent activity. J Neurosci. 34(2014)10765-9.

DOI: 10.1523/jneurosci.5316-13.2014

Google Scholar

[3] X. Li, X. Liu, N. Zhang, X. Wen, Engineering in situ cross-linkable and neurocompatible hydrogels. J Neurotrauma. 31(2014)1431-8.

DOI: 10.1089/neu.2013.3215

Google Scholar

[4] M. Pandey, M.C.I. Mohd Amin, CNS Neurotoxicity of Bacterial Cellulose-Poly(acrylamide-sodium acrylate) Hydrogel: A Future Therapeutic Carrier. CNS Neurosci Ther. 20( 2014)377-8.

DOI: 10.1111/cns.12237

Google Scholar

[5] H. Park, J. S. Temenoff, Y. Tabata, A. I. Caplan, A.G. Mikos, Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering . Biomaterials 28(2007)3217–3227.

DOI: 10.1016/j.biomaterials.2007.03.030

Google Scholar

[6] J.E. O Grady, D.M. Bordon, Global regulatory registration requirements for collagen-based combination products: points to consider. Adv Drug Deliv Rev. 55(2003)1699-721.

DOI: 10.1016/j.addr.2003.08.006

Google Scholar

[7] E. Song, S. Yeon Kim, T. Chun, H.J. Byun, Y.M. Lee, Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials. 27(2006)2951-61.

DOI: 10.1016/j.biomaterials.2006.01.015

Google Scholar

[8] S. Krishnan, S Sekar, MF Katheem, S Krishnakumar, TP Sastry, Fish scale collagen-a novel material for corneal tissue engineering. Artif Organs. 36(2012)829-35.

DOI: 10.1111/j.1525-1594.2012.01452.x

Google Scholar

[9] Y. Nomura, S. Toki, Y. Ishii, K. Shirai, The physicochemical property of shark type I collagen gel and membrane. J Agric Food Chem. 48(2000)2028-32.

DOI: 10.1021/jf990773a

Google Scholar

[10] J. Zhu, L.J. Kaufman, Collagen I self-assembly: revealing the developing structures that generate turbidity. Biophys J. 106(2014)1822-31.

DOI: 10.1016/j.bpj.2014.03.011

Google Scholar

[11] F. Xu, J. Li, V. Jain, R.S. Tu, Q. Huang, V. Nanda. Compositional control of higher order assembly using synthetic collagen peptides. J Am Chem Soc. 134(2012)47-50.

DOI: 10.1021/ja2077894

Google Scholar

[12] L.E. O Leary, J.A. Fallas, E.L. Bakota, M.K. Kang, J.D. Hartgerink, Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat Chem. 3 (2011)821-8.

DOI: 10.1038/nchem.1123

Google Scholar

[13] J. Luo, Y.W. Tong, Self-assembly of collagen-mimetic peptide amphiphiles into biofunctional nanofiber. ACS Nano. 5(2011)7739-47.

DOI: 10.1021/nn202822f

Google Scholar

[14] S. Bancelin, C. Aimé, T. Coradin, M.C. Schanne-Klein, In situ three-dimensional monitoring of collagen fibrillogenesis using SHG microscopy. Biomed Opt Express. 3(2012)1446-54.

DOI: 10.1364/boe.3.001446

Google Scholar

[15] V.K. Yadavalli, D.V. Svintradze, R.M. Pidaparti, Nanoscale measurements of the assembly of collagen to fibrils. Int J Biol Macromol. 46(2010)458-64.

DOI: 10.1016/j.ijbiomac.2010.02.012

Google Scholar

[16] Y.L. Yang, L.J. Kaufman, Rheology and confocal reflectance microscopy as probes of mechanical properties and structure during collagen and collagen/hyaluronan self-assembly. Biophys J. 96(2009)1566-85.

DOI: 10.1016/j.bpj.2008.10.063

Google Scholar

[17] A.M. Ferreria, P. Gentile, V. Chiono, G. Ciardelli, Collagen for bone tissue regeneration Acta Biomaterialia. 8(2012)3191-3200.

DOI: 10.1016/j.actbio.2012.06.014

Google Scholar

[18] E.A.A. Neel, L. Bozac, J.C. Knowles, O. Syed, V. Mudera, R. Day, J.K. Hyun, Collagen Emerging collagen based therapies hit the patient Advanced Drug Delivery Reviews. 65(2013)429-456.

DOI: 10.1016/j.addr.2012.08.010

Google Scholar

[19] J.P. Orgel , J.D. San Antonio, O. Antipova, Molecular and structural mapping of collagen fibril interactions. Connect Tissue Res. 52(2011)2: 2-17.

DOI: 10.3109/03008207.2010.511353

Google Scholar

[20] R.W. Farndale, T. Lisman, D. Bilhan, S. Hamaia, C.S. Smerling, N. Pugh, A. Konitsiotis, B. Leitinger, P.G. de Groot, G.E. Jarvis, N. Raynal, Cell-collagen interactions: the use of peptide Toolkits to investigate collagen-receptor interactions. Biochem Soc Trans. 36(2008).

DOI: 10.1042/bst0360241

Google Scholar

[21] T. van Wieringen, S. Kalamajski, A. Lidén, D. Bihan, B. Guss, D. Heinegard, R.W. Farndale, K. Rubin, The streptococcal collagen-binding protein CNE specifically interferes with alphaVbeta3-mediated cellular interactions with triple helical collagen. J Biol Chem. 285(2010).

DOI: 10.1074/jbc.m110.146001

Google Scholar

[22] S.L. Schor, Cell proliferation and migration on collagen substrata in vitro. J Cell Sci. 41(1980) 159-175.

DOI: 10.1242/jcs.41.1.159

Google Scholar

[23] K.S. Rho,L. Jeong, G. Lee, B.M. Seo Y.J. Park S.D. Hong, S. Rho J.J. Cho W.H. Park ,B.M. Min, Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 27(2006).

DOI: 10.1016/j.biomaterials.2005.08.004

Google Scholar

[24] R.F. MacBarb, A.L. Chen, J.C. Hu, K.A. Athanasiou, Engineering functional anisotropy in fibrocartilage neotissues. Biomaterials. 34(2013)9980-9.

DOI: 10.1016/j.biomaterials.2013.09.026

Google Scholar

[25] N. Saeidi, J. Ruberti, Nucleation, growth and alignment of collagen fibrils produced by shear-influenced self assembly for corneal tissue engineering templates Journal of Biomechanics. 39(2006)S386.

DOI: 10.1016/s0021-9290(06)84560-4

Google Scholar

[26] Z., Xia X. Yu, X. Jiang, H.D. Brody, D.W. Rowe, M. Wei, Fabrication and characterization of biomimetic collagen–apatite scaffolds with tunable structures for bone tissue engineering Acta Biomaterialia. 9(2013)7308-7319.

DOI: 10.1016/j.actbio.2013.03.038

Google Scholar

[27] K.A. Alberti, A.M. Hopkins, M.D. Tang-Schomer, D.L. Kaplan, Q. Xu, The behavior of neuronal cells on tendon-derived collagen sheets as potential substrates for nerve regeneration, Biomaterials ; 35(2014)3551-3557.

DOI: 10.1016/j.biomaterials.2013.12.082

Google Scholar

[28] F. Stang, H. Fansa, G. Wolf, M. Reppin, G. Keilhoff, Structural parameters of collagen nerve grafts influence peripheral nerve regeneration Biomaterials, Volume 26, Issue 16, June 2005, Pages 3083-3091 29).

DOI: 10.1016/j.biomaterials.2004.07.060

Google Scholar

[29] K. Kim, K. Ryu, T.I. Kim, Cationic methylcellulose derivative with serum-compatibility and endosome buffering ability for gene delivery systems. Carbohydr Polym. 110(2014)268-77.

DOI: 10.1016/j.carbpol.2014.03.073

Google Scholar

[30] L. Conova, J. Vernengo, Y. Jin, B.T. Himes, B. Neuhuber, I. Fischer, A. Lowman, J. Vernengo, Y. Jin, B.T. Himes, B. Neuhuber, I. Fischer, A. Lowman, A pilot study of poly(N-isopropylacrylamide)-g-polyethylene glycol and poly(N-isopropylacrylamide)-g-methylcellulose branched copolymers as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord. J Neurosurg Spine. 15(2011).

DOI: 10.3171/2011.7.spine11194

Google Scholar

[31] M.C. Tate, D.A. Shear, S.W. Hoffman, D.G. Stein, M.C. LaPlaca, Biocompatibility of methylcellulose-based constructs designed for intracerebral gelation following experimental traumatic brain injury. Biomaterials. 22(2001)1113-23.

DOI: 10.1016/s0142-9612(00)00348-3

Google Scholar

[32] M.J. Caicco, T. Zahir, A.J. Mothe, B.G. Ballios, A.J. Kihm, C.H. Tator, M.S. Shoichet, Characterization of hyaluronan-methylcellulose hydrogels for cell delivery to the injured spinal cord. J Biomed Mater Res A. 101(2013)1472-7.

DOI: 10.1002/jbm.a.34454

Google Scholar

[33] S. Benjakul, Y. Thiansilakul, W. Visessanguan, S. Roytrakul, H. Kishimura, T. Prodprand, J. Meesane, Extraction and characterisation of pepsin-solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus), Journal of the Science of Food and Agriculture. 90(2010).

DOI: 10.1002/jsfa.3795

Google Scholar

[34] J.H. Bradt , M. Mertig, A. Teresiak, W. Pompe, Biomimetic Mineralization of Collagen by Combined Fibril Assembly and Calcium Phosphate Formation. Chem. Mater. 11(1999)2694–2701.

DOI: 10.1021/cm991002p

Google Scholar

[35] J.C. Arboleya, P.J. Wilde, Competitive adsorption of proteins with methylcellulose and hydroxypropyl methylcellulose, Food Hydrocolloids. 19(2005)485-491.

DOI: 10.1016/j.foodhyd.2004.10.013

Google Scholar

[36] P. Kittiphattanabawin, S. Benjakul, W. Visessanguan, H. Kishimura, F. Shahidi, Isolation and Characterisation of collagen from the skin of brownbanded bamboo shark (Chiloscyllium punctatum) Food Chemistry. 119(2010)1519-1526.

DOI: 10.1016/j.foodchem.2009.09.037

Google Scholar

[37] D. Di Yu, C.F. Chi, B. Wang, G.F. Ding, Z.R. Li , Characterization of acid-and pepsin-soluble collagens from spines and skulls of skipjack tuna (Katsuwonus pelamis) Chinese Journal of Natural Medicines. 12(2014)712-720.

DOI: 10.1016/s1875-5364(14)60110-2

Google Scholar

[38] X. Ma, P.R. Chang, J. Yu, Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers ; 72(2008)369-375.

DOI: 10.1016/j.carbpol.2007.09.002

Google Scholar

[39] E. Badea, G. Della Gatta, T. Usacheva, Effects of temperature and relative humidity on fibrillar collagen in parchment: A micro differential scanning calorimetry (micro DSC) study. Polymer Degradation and Stability. 97(2012)346-353.

DOI: 10.1016/j.polymdegradstab.2011.12.013

Google Scholar

[40] A. Rochdi, L.C. Foucat, J-P. Renou, NMR and DSC studies during thermal denaturation of collagen. Food Chemistry. 69(2000)295-299.

DOI: 10.1016/s0308-8146(99)00267-8

Google Scholar

[41] M. Safandowska, K. Pietrucha, Effect of fish collagen modification on its thermal and rheological properties. International Journal of Biological Macromolecules. 53(2013)32-37.

DOI: 10.1016/j.ijbiomac.2012.10.026

Google Scholar

[42] G. Krishnamoorthy, R. Selvakumar, T.P. Sastry, S. Sadulla, A.B. Mandal, M. Doble, Experimental and theoretical studies on Gallic acid assisted EDC/NHS initiated crosslinked collagen scaffolds, Materials Science and Engineering: C. 43(2014).

DOI: 10.1016/j.msec.2014.07.003

Google Scholar

[43] M.J.B. Wissink, R. Beernink, J.S. Pieper, A.A. Poot, G.H.M. Engbers, T. Beugeling, W.G. van Aken, J. Feijen, Immobilization of heparin to EDC/NHS- crosslinked collagen characterization and in vitro evaluation, Biomaterials 22(2001)151-163.

DOI: 10.1016/s0142-9612(00)00164-2

Google Scholar

[44] Y. Liu, L. Ren, Y. Wang, Crosslinked collagen–gelatin–hyaluronic acid biomimetic film for cornea tissue engineering applications, Materials Science and Engineering: C. 33(2013)196-201.

DOI: 10.1016/j.msec.2012.08.030

Google Scholar

[45] N. Krishnamoorthy, M.H. Yacoub, S.N. Yaliraki, A computational modeling approach for enhancing self asssembly and biofunctionalisation of collagen biomimetic peptides, Biomaterials. 32(2011)7275-7285.

DOI: 10.1016/j.biomaterials.2011.06.074

Google Scholar

[46] B.C. Vidal, V.M.L. Mello, Collagen type I amide I band infrared spectroscopy. Micron. 42( 2011)283-289.

DOI: 10.1016/j.micron.2010.09.010

Google Scholar

[47] K. Belbachir, R. Noreen, G. Gouspillou, C. Petibois, Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem. 395(2009)829-837.

DOI: 10.1007/s00216-009-3019-y

Google Scholar

[48] Y. Ozaki, A. Mizuno, F. Kaneuchi, Structural differences between type I and type IV collagen in biological tissue studied in vivo by Attenuated Total Reflection/Fourier Transform Infrared spectroscopy. Applied Spectroscopy. 46(1992)626-630.

DOI: 10.1366/0003702924125104

Google Scholar

[49] Y. Tang, X. Wang, Y. Li, M. Lei, Y. Du, J.F. Kennedy, Knill C.J. Knill, Production and characterisation of novel injectable chitosan/methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds. Carbohydrate Polymers. 82(2010).

DOI: 10.1016/j.carbpol.2010.06.003

Google Scholar