[1]
Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles –Reality Potential and Challenges, PM136, 2nd edition, SPIE Press, Bellingham, Washington, USA, 2004, p.1–765.
DOI: 10.1117/3.547465
Google Scholar
[2]
W. -S. Chu, K. -T. Lee, S. -H. Song, M. -W. Han, J. -Y. Lee, H. -S. Kim, M. -S. Kim, Y. -J. Park, K. -J. Cho, S.H. Ahn, Review of biomimetic underwater robots using smart actuators, Int. J. Precis. Eng. Manuf. 13 (7) (2012) 1281–1292.
DOI: 10.1007/s12541-012-0171-7
Google Scholar
[3]
Kim K J, Pugal D and Leang K K 2011 A twistable ionic polymer–metal composite artificial muscle for marine applications Mar. Technol. Soc. J. 45 83–98.
DOI: 10.4031/mtsj.45.4.9
Google Scholar
[4]
J. W. Paquette and K. J. Kim, Ionomeric electroactive polymer artificial muscle for naval applications, IEEE J. Ocean. Eng., vol. 29, no. 3, p.729–738, Jul. (2004).
DOI: 10.1109/joe.2004.833132
Google Scholar
[5]
J. D. W. Madden, B. Schmid, M. Hechinger, S. R. Lafontaine, P. G. A. Madden, F. S. Hover, R. Kimball, and I. W. Hunter, Application of polypyrrole actuators: Feasibility of variable camber foils, IEEE J. Ocean. Eng., vol. 29, no. 3, p.738–749, Jul. (2004).
DOI: 10.1109/joe.2004.833128
Google Scholar
[6]
J. Tangorra, P. Anquetil, T. Fofonoff, A. Chen, M. D. Zio, and I. Hunter, The application of conducting polymers to a biorobotic fin propulsor, Bioinspiration Biomimetics, vol. 2, pp. S6–S17, (2007).
DOI: 10.1088/1748-3182/2/2/s02
Google Scholar
[7]
G. Alici, G. Spinks, N. N. Huynh, L. Sarmadi, and R. Minato, Establishment of a biomimetic device based on tri-layer polymer actuators propulsion fins, Bioinspiration Biomimetics, vol. 2, pp. S18–S30, (2007).
DOI: 10.1088/1748-3182/2/2/s03
Google Scholar
[8]
S. McGovern, G. Alici, V. T. Truong, and G. Spinks, Finding NEMO (Novel Electromaterial Muscle Oscillator): A polypyrrole powered robotic fish with real-time wireless speed and directional control, Smart Mater. Struct., vol. 18, pp.095-1–095 009-10, (2009).
DOI: 10.1088/0964-1726/18/9/095009
Google Scholar
[9]
Joseph Najem and Donald J. Leo, A bio-inspired bell kinematics design of a jellyfish robot using ionic polymer metal composites actuators, Electroactive Polymer Actuators and Devices (EAPAD) 2012, Proc. of SPIE Vol. 8340, 83401Q.
DOI: 10.1117/12.915170
Google Scholar
[10]
K. J. Kim and M. Shahinpoor, Ionic polymer–metal composites: II. Manufacturing techniques, Smart Mater. Struct., vol. 12, p.65–79, (2003).
DOI: 10.1088/0964-1726/12/1/308
Google Scholar
[11]
R. Tiwari, E. Garcia, The state of understanding of ionic polymer metal composite architecture: a review, Smart Mater. Struct. 20 (2011) 083001.
DOI: 10.1088/0964-1726/20/8/083001
Google Scholar
[12]
G. V. Lauder and E. G. Drucker, Morphology and experimental hydrodynamics of fish fin control surfaces, IEEE J. Ocean. Eng., vol. 29, no. 3, p.556–571, Jul. (2004).
DOI: 10.1109/joe.2004.833219
Google Scholar
[13]
F. E. Fish and G. V. Lauder, Passive and active flow control by swimming fishes and mammals, Annu. Rev. Fluid Mech., vol. 38, p.193–224, (2006).
DOI: 10.1146/annurev.fluid.38.050304.092201
Google Scholar
[14]
M. J. Lighthill, Large-amplitude elongated-body theory of fish locomotion, in Proc. R. Soc. Lond. B, 1971, vol. 179, p.125–138.
DOI: 10.1098/rspb.1971.0085
Google Scholar
[15]
T. Y. Wu, Mathematical biofluid dynamics and mechanophysiology of fish locomotion, Math. Methods Appl. Sci., vol. 24, p.1541–1564, (2001).
DOI: 10.1002/mma.218
Google Scholar
[16]
U. K. Muller, E. J. Stamhuis, and J. J. Videler, Riding the waves: The role of the body wave in undulatory fish swimming, Integr. Comp. Biol., vol. 42, p.981–987, (2002).
DOI: 10.1093/icb/42.5.981
Google Scholar
[17]
J. Peng, J. O. Dabiri, P. G. Madden, and G. V. Lauder, Non-invasive measurement of instantaneous forces during aquatic locomotion: A case study of the bluegill sunfish pectoral fin, J. Exp. Biol., vol. 210, p.685– 698, (2007).
DOI: 10.1242/jeb.02692
Google Scholar
[18]
R. Mittal, Computational modeling in biohydrodynamics: Trends, challenges, and recent advances, IEEE J. Ocean. Eng., vol. 29, no. 3, p.595–604, Jul. (2004).
DOI: 10.1109/joe.2004.833215
Google Scholar
[19]
L. Shi, S. Guo, K. Asaka, A bio-inspired underwater microrobot with compact structure and multifunctional locomotion, in: Proceedings of 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2011, Budapest, Hungary, 2011, p.203.
DOI: 10.1109/aim.2011.6026989
Google Scholar
[20]
S. Heo, T. Wiguna, H. Park, N. Goo, Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators, Journal of Bionic Engineering 4 (3) (2007) 151–158.
DOI: 10.1016/s1672-6529(07)60027-4
Google Scholar
[21]
S. Yeom, I. Oh, A biomimetic jellyfish robot based on ionic polymer metal composite actuators, Journal of Smart Materials and Structures 18 (2009) 1–16.
DOI: 10.1088/0964-1726/18/8/085002
Google Scholar
[22]
W. Zhang, S. Guo, K. Asaka, A new type of hybrid fish-like microrobot, International Journal of Automation and Computing 3 (4) (2006)358–365.
DOI: 10.1007/s11633-006-0358-4
Google Scholar
[23]
L.N. Hao, S. Xu, B. Liu, A miniature fish-like robot with infrared remote receiver and IPMC actuator, Journal of Northeastern University (Natural ScienceEdition)30(2009)773–776(inChinese).
Google Scholar
[24]
Shuxiang Guo, Liwei Shi, Nan Xiao, Kinji Asaka, A biomimetic underwater microrobot with multifunctional locomotion, Robotics and Autonomous Systems 60(2012) 1472-1483.
DOI: 10.1016/j.robot.2012.07.013
Google Scholar
[25]
Yi-chu Chang, and Won-jong Kim, Aquatic Ionic-Polymer-Metal-Composite Insectile Robot With Multi-DOF Legs , IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 18, NO. 2, APRIL 2013 547.
DOI: 10.1109/tmech.2012.2210904
Google Scholar
[26]
Liwei Shi, Shuxiang Guo, Shilian Mao, Maoxun Li and Kinji Asaka, Development of a Lobster-Inspired Underwater Microrobot, International Journal of Advanced Robotic Systems Vol. 10, 44, (2013).
DOI: 10.5772/54868
Google Scholar
[27]
K. A. Morgansen, B. I. Triplett, and D. J. Klein, Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles, IEEE Trans. Robot., vol. 23, no. 6, p.1184–1199, Dec. (2007).
DOI: 10.1109/led.2007.911625
Google Scholar
[28]
M. Epstein, J. E. Colgate, and M. A. MacIver, Generating thrust with a biologically-inspired robotic ribbon fin, in Proc. 2006 IEEE/RSJ Int. Conf. Intell. Robots Syst., Beijing, China, p.2412–2417.
DOI: 10.1109/iros.2006.281681
Google Scholar
[29]
JoelJ. Hubbard, Maxwell Fleming, Viljar Palmre, David Pugal, KwangJ. Kim, and KamK. Leang, Monolithic IPMC Fins for Propulsion and Maneuvering in Bioinspired Underwater Robotics , IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 39, NO. 3, JULY (2014).
DOI: 10.1109/joe.2013.2259318
Google Scholar
[30]
Viljar Palmre, Joel J Hubbard, Maxwell Fleming, David Pugal, Sungjun Kim, Kwang J Kim and Kam K Leang, An IPMC-enabled bio-inspired bending/twisting fin for underwater applications, IOP PUBLISHING SMART MATERIALS AND STRUCTURES, Smart Mater. Struct. 22 (2013).
DOI: 10.1088/0964-1726/22/1/014003
Google Scholar
[31]
Zheng Chen, Tae I. Um a & Hilary Bart-Smith, Bio-inspired robotic manta ray powered by ionic polymer–metal composite artificial muscles, International Journal of Smart and Nano Materials Vol. 3, No. 4, December 2012, 296–308.
DOI: 10.1080/19475411.2012.686458
Google Scholar
[32]
S. Guo, T. Fukuda, and K. Asaka, A new type of fish-like underwater microrobot, IEEE/ASME Trans. Mechatronics, vol. 8, no. 1, p.136–141, Mar. (2003).
DOI: 10.1109/tmech.2003.809134
Google Scholar
[33]
B. Kim, D. Kim, J. Jung, and J. Park, A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators, Smart Mater. Struct., vol. 14, p.1579–1585, (2005).
DOI: 10.1088/0964-1726/14/6/051
Google Scholar
[34]
X. Tan, D. Kim, N. Usher, D. Laboy, J. Jackson, A. Kapetanovic, J. Rapai, B. Sabadus, and X. Zhou, An autonomous robotic fish for mobile sensing, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Beijing, China, 2006, p.5424–5429.
DOI: 10.1109/iros.2006.282110
Google Scholar
[35]
E. Mbemmo, Z. Chen, S. Shatara, and X. Tan, Modeling of biomimetic robotic fish propelled by an ionic polymer–metal composite actuator, in Proc. IEEE Int. Conf. Robot. Autom., 2008, p.689–694.
DOI: 10.1109/robot.2008.4543285
Google Scholar
[36]
N. Kamamichi, M. Yamakita, K. Asaka, and Z. -W. Luo, A snake-like swimming robot using IPMC actuator/sensor, in Proc. IEEE Conf. Robot. Autom., Orlando, FL, 2006, p.1812–1817.
DOI: 10.1109/robot.2006.1641969
Google Scholar
[37]
J. Yu, L. Wang, and M. Tan, Geometric optimization of relative link lengths for biomimetic robotic fish, IEEE Trans. Robot., vol. 23, no. 2, p.382–386, Apr. (2007).
DOI: 10.1109/tro.2007.892221
Google Scholar
[38]
S. Zhao and J. Yuh, Experimental study on advanced underwater robot control, IEEE Trans. Robot., vol. 21, no. 4, p.695–703, Aug. (2005).
DOI: 10.1109/tro.2005.844682
Google Scholar
[39]
F. Boyer, M. Porez, and W. Khalil, Macro-continuous computed torque algorithm for a three-dimensional eel-like robot, IEEE Trans. Robot., vol. 22, no. 4, p.763–775, Aug. (2006).
DOI: 10.1109/tro.2006.875492
Google Scholar
[40]
W. Yim, J. Lee, and K. J. Kim, An artificial muscle actuator for biomimetic underwater propulsors, Bioinspiration Biomimetics, vol. 2, pp. S31–S41, (2007).
DOI: 10.1088/1748-3182/2/2/s04
Google Scholar
[41]
P. Brunetto, L. Fortuna, S. Graziani, and S. Strazzeri, A model of ionic polymer–metal composite actuators in underwater operations, Smart Mater. Struct., vol. 17, no. 2, pp.025-1–025 029-12, (2008).
DOI: 10.1088/0964-1726/17/2/025029
Google Scholar
[42]
K. Abdelnour, E. Mancia, S. D. Peterson, and M. Porfiri, Hydrodynamics of underwater propulsors based on ionic polymer metal composites: A numerical study, Smart Mater. Struct., vol. 18, no. 8, pp.085-1– 085 006-11, (2009).
DOI: 10.1088/0964-1726/18/8/085006
Google Scholar
[43]
S. D. Peterson, M. Porfiri, and A. Rovardi, A particle image velocimetry study of vibrating ionic polymer metal composites in aqueous environments, IEEE/ASME Trans. Mechatronics, vol. 14, no. 4, p.474–483, Aug. (2009).
DOI: 10.1109/tmech.2009.2020979
Google Scholar
[44]
Zheng Chen, Stephan Shatara, and Xiaobo Tan, 2010, Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer–Metal Composite Caudal Fin, Mechatronics, IEEE/ASME Transactions on (Volume: 15 , Issue: 3).
DOI: 10.1109/tmech.2009.2027812
Google Scholar
[45]
Mazhar Ul Haq, Prof. Zhao Gang, Shaban Usman , Anees Ur Rehman, S.M. Aftab, 2015, Forward Kinematic Analysis of IPMC Actuated Three Link Mechanism for Fin Actuation of Fish like Micro Device, Journal of Biomimetics, Biomaterials, and Biomedical Engineering Vol. 23 pp.67-75.
DOI: 10.4028/www.scientific.net/jbbbe.23.67
Google Scholar
[46]
Mazhar Ul Haq, Prof. Zhao Gang, Hafiz Muhammad Waqas , Anees Ur Rehman, S.M. Aftab, 2015, Deflection Analysis of IPMC Actuated Fin of a Fish like Micro Device, Journal of Biomimetics, Biomaterials, and Biomedical Engineering (Accepted to Vol. 24 (2015).
DOI: 10.4028/www.scientific.net/jbbbe.24.97
Google Scholar