Dynamic Analysis of IPMC Actuated Fin of a Micro Fish Like Device

Article Preview

Abstract:

In this paper, a methodology is presented to perform dynamic analysis of structural linked mechanisms under true actuation cycle and force response of applied IPMC actuators. Dynamic analysis of a three link mechanism for fin actuation of a micro fish like device, towed by a surface vessel through tow cable, is performed through this methodology and same is applicable to other biomimetic robotic applications. Fluid (water) exerts a torque on IPMC actuated fin which is a function of fin's deflection and fluid flow velocity. Dynamic analysis is performed to assess the performance and efficacy of fin actuation mechanism under different loading conditions in terms of fin's deflection, velocity and acceleration. Actuation force is increased by increasing number of applied IPMC actuators of known actuation cycle and force generation response. Applied torque is determined by performing a numerical simulation of IPMC actuated fin against different flow velocities through two-way fluid structure interaction (FSI) approach. Numerical simulation is performed in ANSYS WORKBENCH to capture the complex hydrodynamic interactions between fin and fluid. Effect of increased actuation force against constant flow velocity (towing speed) and of increased flow velocity against constant actuation force are evaluated in terms of fin's deflection, velocity and acceleration. Finally, consequence of increasing the length of the link, connecting IPMC actuators and fin, are appraised for same actuation force and applied torque. Dynamic analysis is performed in Pro/ Mechanism, an advanced simulation tool. A technique of virtual prototyping through simulations is applied to access the performance of the fin actuation mechanism under true loading scenario before going into experimental phase, saving cost and time

You might also be interested in these eBooks

Info:

Pages:

82-96

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles –Reality Potential and Challenges, PM136, 2nd edition, SPIE Press, Bellingham, Washington, USA, 2004, p.1–765.

DOI: 10.1117/3.547465

Google Scholar

[2] W. -S. Chu, K. -T. Lee, S. -H. Song, M. -W. Han, J. -Y. Lee, H. -S. Kim, M. -S. Kim, Y. -J. Park, K. -J. Cho, S.H. Ahn, Review of biomimetic underwater robots using smart actuators, Int. J. Precis. Eng. Manuf. 13 (7) (2012) 1281–1292.

DOI: 10.1007/s12541-012-0171-7

Google Scholar

[3] Kim K J, Pugal D and Leang K K 2011 A twistable ionic polymer–metal composite artificial muscle for marine applications Mar. Technol. Soc. J. 45 83–98.

DOI: 10.4031/mtsj.45.4.9

Google Scholar

[4] J. W. Paquette and K. J. Kim, Ionomeric electroactive polymer artificial muscle for naval applications, IEEE J. Ocean. Eng., vol. 29, no. 3, p.729–738, Jul. (2004).

DOI: 10.1109/joe.2004.833132

Google Scholar

[5] J. D. W. Madden, B. Schmid, M. Hechinger, S. R. Lafontaine, P. G. A. Madden, F. S. Hover, R. Kimball, and I. W. Hunter, Application of polypyrrole actuators: Feasibility of variable camber foils, IEEE J. Ocean. Eng., vol. 29, no. 3, p.738–749, Jul. (2004).

DOI: 10.1109/joe.2004.833128

Google Scholar

[6] J. Tangorra, P. Anquetil, T. Fofonoff, A. Chen, M. D. Zio, and I. Hunter, The application of conducting polymers to a biorobotic fin propulsor, Bioinspiration Biomimetics, vol. 2, pp. S6–S17, (2007).

DOI: 10.1088/1748-3182/2/2/s02

Google Scholar

[7] G. Alici, G. Spinks, N. N. Huynh, L. Sarmadi, and R. Minato, Establishment of a biomimetic device based on tri-layer polymer actuators propulsion fins, Bioinspiration Biomimetics, vol. 2, pp. S18–S30, (2007).

DOI: 10.1088/1748-3182/2/2/s03

Google Scholar

[8] S. McGovern, G. Alici, V. T. Truong, and G. Spinks, Finding NEMO (Novel Electromaterial Muscle Oscillator): A polypyrrole powered robotic fish with real-time wireless speed and directional control, Smart Mater. Struct., vol. 18, pp.095-1–095 009-10, (2009).

DOI: 10.1088/0964-1726/18/9/095009

Google Scholar

[9] Joseph Najem and Donald J. Leo, A bio-inspired bell kinematics design of a jellyfish robot using ionic polymer metal composites actuators, Electroactive Polymer Actuators and Devices (EAPAD) 2012, Proc. of SPIE Vol. 8340, 83401Q.

DOI: 10.1117/12.915170

Google Scholar

[10] K. J. Kim and M. Shahinpoor, Ionic polymer–metal composites: II. Manufacturing techniques, Smart Mater. Struct., vol. 12, p.65–79, (2003).

DOI: 10.1088/0964-1726/12/1/308

Google Scholar

[11] R. Tiwari, E. Garcia, The state of understanding of ionic polymer metal composite architecture: a review, Smart Mater. Struct. 20 (2011) 083001.

DOI: 10.1088/0964-1726/20/8/083001

Google Scholar

[12] G. V. Lauder and E. G. Drucker, Morphology and experimental hydrodynamics of fish fin control surfaces, IEEE J. Ocean. Eng., vol. 29, no. 3, p.556–571, Jul. (2004).

DOI: 10.1109/joe.2004.833219

Google Scholar

[13] F. E. Fish and G. V. Lauder, Passive and active flow control by swimming fishes and mammals, Annu. Rev. Fluid Mech., vol. 38, p.193–224, (2006).

DOI: 10.1146/annurev.fluid.38.050304.092201

Google Scholar

[14] M. J. Lighthill, Large-amplitude elongated-body theory of fish locomotion, in Proc. R. Soc. Lond. B, 1971, vol. 179, p.125–138.

DOI: 10.1098/rspb.1971.0085

Google Scholar

[15] T. Y. Wu, Mathematical biofluid dynamics and mechanophysiology of fish locomotion, Math. Methods Appl. Sci., vol. 24, p.1541–1564, (2001).

DOI: 10.1002/mma.218

Google Scholar

[16] U. K. Muller, E. J. Stamhuis, and J. J. Videler, Riding the waves: The role of the body wave in undulatory fish swimming, Integr. Comp. Biol., vol. 42, p.981–987, (2002).

DOI: 10.1093/icb/42.5.981

Google Scholar

[17] J. Peng, J. O. Dabiri, P. G. Madden, and G. V. Lauder, Non-invasive measurement of instantaneous forces during aquatic locomotion: A case study of the bluegill sunfish pectoral fin, J. Exp. Biol., vol. 210, p.685– 698, (2007).

DOI: 10.1242/jeb.02692

Google Scholar

[18] R. Mittal, Computational modeling in biohydrodynamics: Trends, challenges, and recent advances, IEEE J. Ocean. Eng., vol. 29, no. 3, p.595–604, Jul. (2004).

DOI: 10.1109/joe.2004.833215

Google Scholar

[19] L. Shi, S. Guo, K. Asaka, A bio-inspired underwater microrobot with compact structure and multifunctional locomotion, in: Proceedings of 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2011, Budapest, Hungary, 2011, p.203.

DOI: 10.1109/aim.2011.6026989

Google Scholar

[20] S. Heo, T. Wiguna, H. Park, N. Goo, Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators, Journal of Bionic Engineering 4 (3) (2007) 151–158.

DOI: 10.1016/s1672-6529(07)60027-4

Google Scholar

[21] S. Yeom, I. Oh, A biomimetic jellyfish robot based on ionic polymer metal composite actuators, Journal of Smart Materials and Structures 18 (2009) 1–16.

DOI: 10.1088/0964-1726/18/8/085002

Google Scholar

[22] W. Zhang, S. Guo, K. Asaka, A new type of hybrid fish-like microrobot, International Journal of Automation and Computing 3 (4) (2006)358–365.

DOI: 10.1007/s11633-006-0358-4

Google Scholar

[23] L.N. Hao, S. Xu, B. Liu, A miniature fish-like robot with infrared remote receiver and IPMC actuator, Journal of Northeastern University (Natural ScienceEdition)30(2009)773–776(inChinese).

Google Scholar

[24] Shuxiang Guo, Liwei Shi, Nan Xiao, Kinji Asaka, A biomimetic underwater microrobot with multifunctional locomotion, Robotics and Autonomous Systems 60(2012) 1472-1483.

DOI: 10.1016/j.robot.2012.07.013

Google Scholar

[25] Yi-chu Chang, and Won-jong Kim, Aquatic Ionic-Polymer-Metal-Composite Insectile Robot With Multi-DOF Legs , IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 18, NO. 2, APRIL 2013 547.

DOI: 10.1109/tmech.2012.2210904

Google Scholar

[26] Liwei Shi, Shuxiang Guo, Shilian Mao, Maoxun Li and Kinji Asaka, Development of a Lobster-Inspired Underwater Microrobot, International Journal of Advanced Robotic Systems Vol. 10, 44, (2013).

DOI: 10.5772/54868

Google Scholar

[27] K. A. Morgansen, B. I. Triplett, and D. J. Klein, Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles, IEEE Trans. Robot., vol. 23, no. 6, p.1184–1199, Dec. (2007).

DOI: 10.1109/led.2007.911625

Google Scholar

[28] M. Epstein, J. E. Colgate, and M. A. MacIver, Generating thrust with a biologically-inspired robotic ribbon fin, in Proc. 2006 IEEE/RSJ Int. Conf. Intell. Robots Syst., Beijing, China, p.2412–2417.

DOI: 10.1109/iros.2006.281681

Google Scholar

[29] JoelJ. Hubbard, Maxwell Fleming, Viljar Palmre, David Pugal, KwangJ. Kim, and KamK. Leang, Monolithic IPMC Fins for Propulsion and Maneuvering in Bioinspired Underwater Robotics , IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 39, NO. 3, JULY (2014).

DOI: 10.1109/joe.2013.2259318

Google Scholar

[30] Viljar Palmre, Joel J Hubbard, Maxwell Fleming, David Pugal, Sungjun Kim, Kwang J Kim and Kam K Leang, An IPMC-enabled bio-inspired bending/twisting fin for underwater applications, IOP PUBLISHING SMART MATERIALS AND STRUCTURES, Smart Mater. Struct. 22 (2013).

DOI: 10.1088/0964-1726/22/1/014003

Google Scholar

[31] Zheng Chen, Tae I. Um a & Hilary Bart-Smith, Bio-inspired robotic manta ray powered by ionic polymer–metal composite artificial muscles, International Journal of Smart and Nano Materials Vol. 3, No. 4, December 2012, 296–308.

DOI: 10.1080/19475411.2012.686458

Google Scholar

[32] S. Guo, T. Fukuda, and K. Asaka, A new type of fish-like underwater microrobot, IEEE/ASME Trans. Mechatronics, vol. 8, no. 1, p.136–141, Mar. (2003).

DOI: 10.1109/tmech.2003.809134

Google Scholar

[33] B. Kim, D. Kim, J. Jung, and J. Park, A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators, Smart Mater. Struct., vol. 14, p.1579–1585, (2005).

DOI: 10.1088/0964-1726/14/6/051

Google Scholar

[34] X. Tan, D. Kim, N. Usher, D. Laboy, J. Jackson, A. Kapetanovic, J. Rapai, B. Sabadus, and X. Zhou, An autonomous robotic fish for mobile sensing, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Beijing, China, 2006, p.5424–5429.

DOI: 10.1109/iros.2006.282110

Google Scholar

[35] E. Mbemmo, Z. Chen, S. Shatara, and X. Tan, Modeling of biomimetic robotic fish propelled by an ionic polymer–metal composite actuator, in Proc. IEEE Int. Conf. Robot. Autom., 2008, p.689–694.

DOI: 10.1109/robot.2008.4543285

Google Scholar

[36] N. Kamamichi, M. Yamakita, K. Asaka, and Z. -W. Luo, A snake-like swimming robot using IPMC actuator/sensor, in Proc. IEEE Conf. Robot. Autom., Orlando, FL, 2006, p.1812–1817.

DOI: 10.1109/robot.2006.1641969

Google Scholar

[37] J. Yu, L. Wang, and M. Tan, Geometric optimization of relative link lengths for biomimetic robotic fish, IEEE Trans. Robot., vol. 23, no. 2, p.382–386, Apr. (2007).

DOI: 10.1109/tro.2007.892221

Google Scholar

[38] S. Zhao and J. Yuh, Experimental study on advanced underwater robot control, IEEE Trans. Robot., vol. 21, no. 4, p.695–703, Aug. (2005).

DOI: 10.1109/tro.2005.844682

Google Scholar

[39] F. Boyer, M. Porez, and W. Khalil, Macro-continuous computed torque algorithm for a three-dimensional eel-like robot, IEEE Trans. Robot., vol. 22, no. 4, p.763–775, Aug. (2006).

DOI: 10.1109/tro.2006.875492

Google Scholar

[40] W. Yim, J. Lee, and K. J. Kim, An artificial muscle actuator for biomimetic underwater propulsors, Bioinspiration Biomimetics, vol. 2, pp. S31–S41, (2007).

DOI: 10.1088/1748-3182/2/2/s04

Google Scholar

[41] P. Brunetto, L. Fortuna, S. Graziani, and S. Strazzeri, A model of ionic polymer–metal composite actuators in underwater operations, Smart Mater. Struct., vol. 17, no. 2, pp.025-1–025 029-12, (2008).

DOI: 10.1088/0964-1726/17/2/025029

Google Scholar

[42] K. Abdelnour, E. Mancia, S. D. Peterson, and M. Porfiri, Hydrodynamics of underwater propulsors based on ionic polymer metal composites: A numerical study, Smart Mater. Struct., vol. 18, no. 8, pp.085-1– 085 006-11, (2009).

DOI: 10.1088/0964-1726/18/8/085006

Google Scholar

[43] S. D. Peterson, M. Porfiri, and A. Rovardi, A particle image velocimetry study of vibrating ionic polymer metal composites in aqueous environments, IEEE/ASME Trans. Mechatronics, vol. 14, no. 4, p.474–483, Aug. (2009).

DOI: 10.1109/tmech.2009.2020979

Google Scholar

[44] Zheng Chen, Stephan Shatara, and Xiaobo Tan, 2010, Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer–Metal Composite Caudal Fin, Mechatronics, IEEE/ASME Transactions on (Volume: 15 , Issue: 3).

DOI: 10.1109/tmech.2009.2027812

Google Scholar

[45] Mazhar Ul Haq, Prof. Zhao Gang, Shaban Usman , Anees Ur Rehman, S.M. Aftab, 2015, Forward Kinematic Analysis of IPMC Actuated Three Link Mechanism for Fin Actuation of Fish like Micro Device, Journal of Biomimetics, Biomaterials, and Biomedical Engineering Vol. 23 pp.67-75.

DOI: 10.4028/www.scientific.net/jbbbe.23.67

Google Scholar

[46] Mazhar Ul Haq, Prof. Zhao Gang, Hafiz Muhammad Waqas , Anees Ur Rehman, S.M. Aftab, 2015, Deflection Analysis of IPMC Actuated Fin of a Fish like Micro Device, Journal of Biomimetics, Biomaterials, and Biomedical Engineering (Accepted to Vol. 24 (2015).

DOI: 10.4028/www.scientific.net/jbbbe.24.97

Google Scholar