[1]
K. Messner and J. Gao, The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment,, J. Anat., vol. 193, no. 2, pp.161-178, (1998).
DOI: 10.1046/j.1469-7580.1998.19320161.x
Google Scholar
[2]
Knee Joint - Anatomy and Function | Kenhub., [Online]. Available: https://www.kenhub.com/en/library/anatomy/the-knee-joint. [Accessed: 31-May-2019].
Google Scholar
[3]
Compare Results., [Online]. Available: https://www.duplichecker.com/show-compare-results. [Accessed: 01-Jun-2019].
Google Scholar
[4]
Knee Replacement Surgery Procedure | Johns Hopkins Medicine., [Online]. Available: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/knee-replacement-surgery-procedure. [Accessed: 31-May-2019].
Google Scholar
[5]
Knee replacement - Mayo Clinic., [Online]. Available: https://www.mayoclinic.org/tests-procedures/knee-replacement/about/pac-20385276. [Accessed: 31-May-2019].
Google Scholar
[6]
Osteoarthritis knee replacement PI - UpToDate." [Online]. Available: https://www.uptodate.com/contents/image,imageKey=PI%2F93761. [Accessed: 31-May-2019].
Google Scholar
[7]
S. Miramini, L. Zhang, M. Richardson, P. Mendis, and P. R. Ebeling, Influence of fracture geometry on bone healing under locking plate fixations: A comparison between oblique and transverse tibial fractures,, Med. Eng. Phys., vol. 38, no. 10, p.1100–1108, (2016).
DOI: 10.1016/j.medengphy.2016.07.007
Google Scholar
[8]
D. P. Byrne, D. Lacroix, and P. J. Prendergast, Simulation of fracture healing in the tibia: mechanoregulation of cell activity using a lattice modeling approach,, J. Orthop. Res., vol. 29, no. 10, p.1496–1503, (2011).
DOI: 10.1002/jor.21362
Google Scholar
[9]
S. Miramini et al., Computational simulation of the early stage of bone healing under different configurations of locking compression plates,, Comput. Methods Biomech. Biomed. Engin., vol. 18, no. 8, p.900–913, (2015).
DOI: 10.1080/10255842.2013.855729
Google Scholar
[10]
H. Isaksson, C.C. Van Donkelaar, R. Huiskes, and K. Ito, Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results,, J. Orthop. Res., vol. 24, no. 5, p.898–907, (2006).
DOI: 10.1002/jor.20118
Google Scholar
[11]
P. J. Prendergast, R. Huiskes, and K. Søballe, Biophysical stimuli on cells during tissue differentiation at implant interfaces,, J. Biomech., vol. 30, no. 6, p.539–548, (1997).
DOI: 10.1016/s0021-9290(96)00140-6
Google Scholar
[12]
F. Djoudi, 3D reconstruction of bony elements of the knee joint and finite element analysis of total knee prosthesis obtained from the reconstructed model., Elsevier, (2013).
DOI: 10.1016/j.jor.2013.09.009
Google Scholar
[13]
A.S. Dickinson, J.W. Steer, and P.R. Worsley, Finite element analysis of the amputated lower limb: a systematic review and recommendations,, Med. Eng. Phys., vol. 43, p.1–18, (2017).
DOI: 10.1016/j.medengphy.2017.02.008
Google Scholar
[14]
C. Bratianu and L. Gruionu, Computational Simulation of a Total Knee Prosthesis Mechanical Behaviour,, in Key Engineering Materials, 2006, vol. 306, p.1265–1270.
DOI: 10.4028/www.scientific.net/kem.306-308.1265
Google Scholar
[15]
S. Miramini, L. Zhang, M. Richardson, P. Mendis, A. Oloyede, and P. Ebeling, The relationship between interfragmentary movement and cell differentiation in early fracture healing under locking plate fixation,, Australas. Phys. Eng. Sci. Med., vol. 39, no. 1, p.123–133, (2016).
DOI: 10.1007/s13246-015-0407-9
Google Scholar
[16]
S. Ghimire, S. Miramini, M. Richardson, P. Mendis, and L. Zhang, Role of Dynamic Loading on Early Stage of Bone Fracture Healing,, Ann. Biomed. Eng., vol. 46, no. 11, p.1768–1784, (2018).
DOI: 10.1007/s10439-018-2083-x
Google Scholar
[17]
G. Ganadhiepan, S. Miramini, M. Patel, P. Mendis, and L. Zhang, Bone fracture healing under Ilizarov fixator: Influence of fixator configuration, fracture geometry, and loading,, Int. j. numer. method. biomed. eng., vol. 35, no. 6, p. e3199, (2019).
DOI: 10.1002/cnm.3199
Google Scholar
[18]
M. Kazemi, Y. Dabiri, and L. Li, Recent advances in computational mechanics of the human knee joint,, Comput. Math. Methods Med., vol. 2013, (2013).
Google Scholar
[19]
H. Andrä et al., Structural simulation of a bone-prosthesis system of the knee joint,, Sensors, vol. 8, no. 9, p.5897–5926, (2008).
DOI: 10.3390/s8095897
Google Scholar
[20]
Y.-G. Koh, J. Son, O.-R. Kwon, S. K. Kwon, and K.-T. Kang, Effect of Post-Cam Design for Normal Knee Joint Kinematic, Ligament, and Quadriceps Force in Patient-Specific Posterior-Stabilized Total Knee Arthroplasty by Using Finite Element Analysis,, Biomed Res. Int., vol. 2018, (2018).
DOI: 10.1155/2018/2438980
Google Scholar
[21]
J. A. Rand, Total Knee Arthroplasty. New York, Raven Press, (1993).
Google Scholar
[22]
M. M. Petersen, N. C. Jensen, P. M. Gehrchen, P. K. Nielsen, and P. T. Nielsen, The relation between trabecular bone strength and bone mineral density assessed by dual photon and dual energy X-ray absorptiometry in the proximal tibia,, Calcif. Tissue Int., vol. 59, no. 4, p.311–314, (1996).
DOI: 10.1007/s002239900131
Google Scholar
[23]
U. Pettersson, P. Nordström, and R. Lorentzon, A comparison of bone mineral density and muscle strength in young male adults with different exercise level,, Calcif. Tissue Int., vol. 64, no. 6, p.490–498, (1999).
DOI: 10.1007/s002239900639
Google Scholar
[24]
A. J. Spittlehouse, C. J. Getty, and R. Eastell, Measurement of bone mineral density by dual-energy X-ray absorptiometry around an uncemented knee prosthesis,, J. Arthroplasty, vol. 14, no. 8, p.957–963, (1999).
DOI: 10.1016/s0883-5403(99)90010-4
Google Scholar
[25]
C. Trevisan, M. Bigoni, M. Denti, E. C. Marinoni, and S. Ortolani, Bone assessment after total knee arthroplasty by dual-energy X-ray absorptiometry: analysis protocol and reproducibility,, Calcif. Tissue Int., vol. 62, no. 4, p.359–361, (1998).
DOI: 10.1007/s002239900444
Google Scholar
[26]
C. Schwartz, How to reduce osteopenia in total knee arthroplasty?,, Eur. J. Orthop. Surg. Traumatol., vol. 29, no. 1, p.139–145, Jan. (2019).
DOI: 10.1007/s00590-018-2290-z
Google Scholar
[27]
C. M. Mintzer, D. D. Robertson, S. Rackemann, F. C. Ewald, R. D. Scott, and M. Spector, Bone loss in the distal anterior femur after total knee arthroplasty.,, Clin. Orthop. Relat. Res., no. 260, p.135–143, (1990).
DOI: 10.1097/00003086-199011000-00024
Google Scholar
[28]
R. B. Abu-Rajab, W. S. Watson, B. Walker, J. Roberts, S. J. Gallacher, and R. M. D. Meek, Peri-prosthetic bone mineral density after total knee arthroplasty: cemented versus cementless fixation,, J. Bone Joint Surg. Br., vol. 88, no. 5, p.606–613, (2006).
DOI: 10.1302/0301-620x.88b5.16893
Google Scholar
[29]
M. Barink, N. Verdonschot, and M. de Waal Malefijt, A different fixation of the femoral component in total knee arthroplasty may lead to preservation of femoral bone stock,, Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 217, no. 5, p.325–332, (2003).
DOI: 10.1243/095441103770802487
Google Scholar
[30]
M. J. Kraay, V. M. Goldberg, M. P. Figgie, and H. E. Figgie III, Distal femoral replacement with allograft/prosthetic reconstruction for treatment of supracondylar fractures in patients with total knee arthroplasty,, J. Arthroplasty, vol. 7, no. 1, p.7–16, (1992).
DOI: 10.1016/0883-5403(92)90025-l
Google Scholar
[31]
R. N. Maniar, M. E. Umlas, J. A. Rodriguez, and C. S. Ranawat, Supracondylar femoral fracture above a PFC posterior cruciate-substituting total knee arthroplasty treated with supracondylar nailing: a unique technical problem,, J. Arthroplasty, vol. 11, no. 5, p.637–639, (1996).
DOI: 10.1016/s0883-5403(96)80123-9
Google Scholar
[32]
M. A. Ritter, E. M. Keating, P. M. Faris, and J. B. Meding, Rush rod fixation of supracondylar fractures above total knee arthroplasties,, J. Arthroplasty, vol. 10, no. 2, p.213–216, (1995).
DOI: 10.1016/s0883-5403(05)80130-5
Google Scholar
[33]
C. H. Rorabeck and J. W. Taylor, Classification of periprosthetic fractures complicating total knee arthroplasty,, Orthop. Clin. North Am., vol. 30, no. 2, p.209–214, (1999).
DOI: 10.1016/s0030-5898(05)70075-4
Google Scholar