[1]
Brewster DC. Clinical and anatomic considerations for surgery in aortoiliac disease and results of surgical treatment. Circulation. 1991; 83(Sup.): 42.
Google Scholar
[2]
Veith F.J., Gupta S.K. et al. Six year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J. Vase Surg. 1986; 3: 104.
DOI: 10.1201/9780429434020-26
Google Scholar
[3]
Darouiche R.O. Treatment of infections associated with surgical implants. N. Engl. J. Med. 2004; 350:1422-1429.
DOI: 10.1056/nejmra035415
Google Scholar
[4]
Hasse B., Hussmann L., Zinkernagel A., Weber R. et al. Vascular graft infections. Swiss. Med. Wkly. 2013; 24: 143.
DOI: 10.4414/smw.2013.13754
Google Scholar
[5]
Grigoryan G.R., Ivanov A.A., Arakelyan V.S. Infection of aortal explants: reasons and methods of treatment. Herald of Experimental and Clinical Surgery. 2011; 4(3): 600-604.
Google Scholar
[6]
Romanovich A.V., Khyschanovish V.Y. Paraprosthetic infection in vascular surgery: contemporary condition of the problem. News of surgery. 2017; 25 (3): 292-299.
Google Scholar
[7]
Hick R.C.J., Greenhaigh R.M. The pathogenesis of Vascular Graft infection. Eur. J. Surg. & Endovascular Surg. 1997; 14: 5-10.
Google Scholar
[8]
Tannenbaum G.A. et al. Safety of vein bypass grafting to the dorsal pedal artery in diabetic patients with foot infections. J. Vasc. Surg. 1992; 15 (6): 982-988.
DOI: 10.1016/0741-5214(92)90454-g
Google Scholar
[9]
Fiorani P., Speziale F., Rizzo L. et al. Detection of aortic graft infection with leukocytes labeled with technetium 99-m hexametazime. J. Vasc. Surg. 1993; 17: 87-95.
DOI: 10.1016/0741-5214(93)90012-b
Google Scholar
[10]
Bruggink J.L., Glaudemans A.W., Saleem B.R., Meerwaldt R. et al. Accuracy of FDG-PET-CT in the diagnostic work-up of vascular prosthetic graft infection. Eur. J. Vasc. Endovasc. Surg. 2010; 40: 348-354.
DOI: 10.1016/j.ejvs.2010.05.016
Google Scholar
[11]
Saleem B.R., Meerwaldt R., Tielliu I.F., Verhoeven E.L. et al. Conservative treatment of vascular prosthetic graft infection is associated with high mortality. Am. J. Surg. 2010; 200 (1): 47-52.
DOI: 10.1016/j.amjsurg.2009.05.018
Google Scholar
[12]
Lyzikov A.A. Surgical tactics in infection of artificial vascular prosthetics. News of Surgery, vol. 29 (1), 120-126.
Google Scholar
[13]
Gabriel M., Pukacki F., Dzieciuchowicz L. et al. Cryopreserved arterial allografts in the treatment of prosthetic graft infections. Eur. J. Vasc. Endovasc. Surg. 2004; 27 (2) : 590-596.
DOI: 10.1016/j.ejvs.2004.02.016
Google Scholar
[14]
Nevelsteen A. et al. Experience with cryopreserved arterial allografts in the treatment of prosthetic graft infections. Cardiovasc. Surg. 1998; 4: 378-382.
DOI: 10.1016/s0967-2109(98)00014-3
Google Scholar
[15]
O'Connor S., Andrew P., Batt M., Becquemin J.P. A systematic review and meta-analysis of treatments for aortic graft infection. J. Vasc. Surg. 2006; 44: 38-45.
DOI: 10.1016/j.jvs.2006.02.053
Google Scholar
[16]
Bondarenko V.M., Rybalchenko O.V. Analysis of prophylactic and therapeutic effect of probiotical drugs from the point of new scientific technologies. The Magazine of Michrobiology. 2015; 2: 90-104.
Google Scholar
[17]
Zaycev A.A., Karpov O.I., Sidorenko S.V. Staphilococcus and Vancomycin: Tendency of Standoff. Antibiotics and Chemotherapy 2003; 48 (6): 20-26.
Google Scholar
[18]
Skoulas G., Moellering R.C.Jr., Eliopoulos G.M. Adaptation of methicillin-resistant Staphylococcus aureus in the face of vancomycin therapy. Clin. Infect. Dis. 2006; 42 (Suppl. 1): 40-50.
DOI: 10.1086/491713
Google Scholar
[19]
Baimagambetov S.A., Balgazarov A.S., Ramazanov Z.K., Markov A.A., Ponomarev A.A., Turgumbayeva R.K. Abdikarimov M.N. Modern models of endoprostheses and periprosthetic infection. Biomedical Research (India). 2018; 29: Iss.11.
DOI: 10.4066/biomedicalresearch.37-18-476
Google Scholar
[20]
Bukharin O.V., Perunova N.B. Symbiotic interactions of man and microorganisms. Physiology of Man. 2012; 38 (1): 128-138.
Google Scholar
[21]
Wagner R.D., Balish E. Potencial hazards of probiotic bacteria for immunodeficient pacients. Bul. Inst. Pasteur (France). 1998; 96 (3): 165-170.
DOI: 10.1016/s0020-2452(98)80011-0
Google Scholar
[22]
Markov A.A., Timokhina T.H., Perunova N.B., Malyugina O.A. Production technique of bifidobacterium's exometabolites with high antimicrobial activity towards Staphylococcus aureus. Sys. Rev. Pharm. 2020; 11(2): 273-277.
Google Scholar
[23]
Bandyk D.F., Berni G.A. et al. Aortofemoral graft infection due to Staphylococcus epidermidis. Arch. Surg. 1984; 119: 102-108.
DOI: 10.1001/archsurg.1984.01390130084015
Google Scholar
[24]
Calligaro K.D. et al. Selective preservation of infected prosthetic arterial grafts: analysis of a 20-year experience with 120 extracavitary-infected grafts. Ann. Surg. 1994; 220(4): 461-469.
DOI: 10.1097/00000658-199410000-00005
Google Scholar
[25]
Topel I., Audebert F., Betz T., Steinbauer M. G. Microbial Spectrum and Primary Resistance to Rifampicin in Infectious Complications in Vascular Surgery: Limits to the Use of Rifampicin-Bonded Prosthetic Grafts. Angiology. 2010; 61: 423-426.
DOI: 10.1177/0003319709360029
Google Scholar
[26]
Frei E. Hodgkiss-Harlow K. Rossi P.J. Edmiston C.Jr., Bandyk DF. Microbial pathogenesis of bacterial biofilms: a causative factor of vascular surgical site infection. Vasc. Endovascular Surg. 2011; 45(8) :688-96.
DOI: 10.1177/1538574411419528
Google Scholar
[27]
Geary KJ, et al. Differential effects of a gram-negative and a grampositive infection on autogenous and prosthetic grafts. J Vasc Surg 1990; 11(2): 339–345; discussion 346–347.
DOI: 10.1067/mva.1990.17626
Google Scholar