Results of the Proliferative Activity’s Analysis of Bifidobacterium Exometabolites in Regard to Hospital Isolates from Patients after Vascular Synthetic Prosthetics Implantation

Article Preview

Abstract:

Problems ofdevelopment of purulent septic complications in vascular surgery during the usage of synthetic prosthetics for shunting and arterial prosthetics are described in this work.Leading factors of development of prosthetic infection are described. Specialties of diagnostics and bacteriological researches wound discharge of wound’s discharge are shown. Tactics of complex treatment of patients with prosthetic infection are presented. This work is dedicated to the experimental researchof proliferative activityof the most encountered opportunistic microorganisms found from the patients of vascular surgery profile with purulent septical complications under the influence of bifidobacteriumbifidium’sexometabolites. Presented results proof the submission of proliferative activity of the most widespread antibiotic-resistant hospital’s isolates under the influence of bifidobacteriumbifidium’sexometabolites.Evaluation during the experiment in vitro of the influence of bifidobacteriumbifidium’sexometabolites on proliferative activityof opportunistic microorganisms.

You might also be interested in these eBooks

Info:

[1] Brewster DC. Clinical and anatomic considerations for surgery in aortoiliac disease and results of surgical treatment. Circulation. 1991; 83(Sup.): 42.

Google Scholar

[2] Veith F.J., Gupta S.K. et al. Six year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J. Vase Surg. 1986; 3: 104.

DOI: 10.1201/9780429434020-26

Google Scholar

[3] Darouiche R.O. Treatment of infections associated with surgical implants. N. Engl. J. Med. 2004; 350:1422-1429.

DOI: 10.1056/nejmra035415

Google Scholar

[4] Hasse B., Hussmann L., Zinkernagel A., Weber R. et al. Vascular graft infections. Swiss. Med. Wkly. 2013; 24: 143.

DOI: 10.4414/smw.2013.13754

Google Scholar

[5] Grigoryan G.R., Ivanov A.A., Arakelyan V.S. Infection of aortal explants: reasons and methods of treatment. Herald of Experimental and Clinical Surgery. 2011; 4(3): 600-604.

Google Scholar

[6] Romanovich A.V., Khyschanovish V.Y. Paraprosthetic infection in vascular surgery: contemporary condition of the problem. News of surgery. 2017; 25 (3): 292-299.

Google Scholar

[7] Hick R.C.J., Greenhaigh R.M. The pathogenesis of Vascular Graft infection. Eur. J. Surg. & Endovascular Surg. 1997; 14: 5-10.

Google Scholar

[8] Tannenbaum G.A. et al. Safety of vein bypass grafting to the dorsal pedal artery in diabetic patients with foot infections. J. Vasc. Surg. 1992; 15 (6): 982-988.

DOI: 10.1016/0741-5214(92)90454-g

Google Scholar

[9] Fiorani P., Speziale F., Rizzo L. et al. Detection of aortic graft infection with leukocytes labeled with technetium 99-m hexametazime. J. Vasc. Surg. 1993; 17: 87-95.

DOI: 10.1016/0741-5214(93)90012-b

Google Scholar

[10] Bruggink J.L., Glaudemans A.W., Saleem B.R., Meerwaldt R. et al. Accuracy of FDG-PET-CT in the diagnostic work-up of vascular prosthetic graft infection. Eur. J. Vasc. Endovasc. Surg. 2010; 40: 348-354.

DOI: 10.1016/j.ejvs.2010.05.016

Google Scholar

[11] Saleem B.R., Meerwaldt R., Tielliu I.F., Verhoeven E.L. et al. Conservative treatment of vascular prosthetic graft infection is associated with high mortality. Am. J. Surg. 2010; 200 (1): 47-52.

DOI: 10.1016/j.amjsurg.2009.05.018

Google Scholar

[12] Lyzikov A.A. Surgical tactics in infection of artificial vascular prosthetics. News of Surgery, vol. 29 (1), 120-126.

Google Scholar

[13] Gabriel M., Pukacki F., Dzieciuchowicz L. et al. Cryopreserved arterial allografts in the treatment of prosthetic graft infections. Eur. J. Vasc. Endovasc. Surg. 2004; 27 (2) : 590-596.

DOI: 10.1016/j.ejvs.2004.02.016

Google Scholar

[14] Nevelsteen A. et al. Experience with cryopreserved arterial allografts in the treatment of prosthetic graft infections. Cardiovasc. Surg. 1998; 4: 378-382.

DOI: 10.1016/s0967-2109(98)00014-3

Google Scholar

[15] O'Connor S., Andrew P., Batt M., Becquemin J.P. A systematic review and meta-analysis of treatments for aortic graft infection. J. Vasc. Surg. 2006; 44: 38-45.

DOI: 10.1016/j.jvs.2006.02.053

Google Scholar

[16] Bondarenko V.M., Rybalchenko O.V. Analysis of prophylactic and therapeutic effect of probiotical drugs from the point of new scientific technologies. The Magazine of Michrobiology. 2015; 2: 90-104.

Google Scholar

[17] Zaycev A.A., Karpov O.I., Sidorenko S.V. Staphilococcus and Vancomycin: Tendency of Standoff. Antibiotics and Chemotherapy 2003; 48 (6): 20-26.

Google Scholar

[18] Skoulas G., Moellering R.C.Jr., Eliopoulos G.M. Adaptation of methicillin-resistant Staphylococcus aureus in the face of vancomycin therapy. Clin. Infect. Dis. 2006; 42 (Suppl. 1): 40-50.

DOI: 10.1086/491713

Google Scholar

[19] Baimagambetov S.A., Balgazarov A.S., Ramazanov Z.K., Markov A.A., Ponomarev A.A., Turgumbayeva R.K. Abdikarimov M.N. Modern models of endoprostheses and periprosthetic infection. Biomedical Research (India). 2018; 29: Iss.11.

DOI: 10.4066/biomedicalresearch.37-18-476

Google Scholar

[20] Bukharin O.V., Perunova N.B. Symbiotic interactions of man and microorganisms. Physiology of Man. 2012; 38 (1): 128-138.

Google Scholar

[21] Wagner R.D., Balish E. Potencial hazards of probiotic bacteria for immunodeficient pacients. Bul. Inst. Pasteur (France). 1998; 96 (3): 165-170.

DOI: 10.1016/s0020-2452(98)80011-0

Google Scholar

[22] Markov A.A., Timokhina T.H., Perunova N.B., Malyugina O.A. Production technique of bifidobacterium's exometabolites with high antimicrobial activity towards Staphylococcus aureus. Sys. Rev. Pharm. 2020; 11(2): 273-277.

Google Scholar

[23] Bandyk D.F., Berni G.A. et al. Aortofemoral graft infection due to Staphylococcus epidermidis. Arch. Surg. 1984; 119: 102-108.

DOI: 10.1001/archsurg.1984.01390130084015

Google Scholar

[24] Calligaro K.D. et al. Selective preservation of infected prosthetic arterial grafts: analysis of a 20-year experience with 120 extracavitary-infected grafts. Ann. Surg. 1994; 220(4): 461-469.

DOI: 10.1097/00000658-199410000-00005

Google Scholar

[25] Topel I., Audebert F., Betz T., Steinbauer M. G. Microbial Spectrum and Primary Resistance to Rifampicin in Infectious Complications in Vascular Surgery: Limits to the Use of Rifampicin-Bonded Prosthetic Grafts. Angiology. 2010; 61: 423-426.

DOI: 10.1177/0003319709360029

Google Scholar

[26] Frei E. Hodgkiss-Harlow K. Rossi P.J. Edmiston C.Jr., Bandyk DF. Microbial pathogenesis of bacterial biofilms: a causative factor of vascular surgical site infection. Vasc. Endovascular Surg. 2011; 45(8) :688-96.

DOI: 10.1177/1538574411419528

Google Scholar

[27] Geary KJ, et al. Differential effects of a gram-negative and a grampositive infection on autogenous and prosthetic grafts. J Vasc Surg 1990; 11(2): 339–345; discussion 346–347.

DOI: 10.1067/mva.1990.17626

Google Scholar