Numerical Investigation of the Effects of Bucket Handle Tears and Subtotal Medial Meniscectomies on the Biomechanical Response of Human Knee Joints

Article Preview

Abstract:

Understanding the complex biomechanical behaviour of the injured and meniscectomised knee joints is of utmost significance in various clinical circumstances. The objective of this study is to investigate the effects of bucket handle tears in the medial meniscus and subtotal medial meniscectomies on the biomechanical response of the knee joints belonging to multiple subjects. The three-dimensional (3D) finite element models of human knee joints including bones, cartilages, menisci, ligaments and tendons are developed from magnetic resonance images (MRI) of multiple healthy subjects. The knee joints are subjected to an axial compressive force, which corresponds to the force of the gait cycle for the full extension position of the knee joint. Three different conditions are compared: intact knee joints, knee joints with bucket handle tears in the medial meniscus and knee joints after subtotal meniscectomies. The bucket handle tear causes a considerable rise in the maximum principal stress at its tip compared to that at the same location in the intact meniscus. This would cause the total rupture of the meniscus resulting in cartilage damage. Subtotal meniscectomy causes a considerable reduction in the contact area along with a substantial increase in the contact pressure and maximum compressive stress in the cartilages in comparison with that in the intact knee. This could give rise to severe degenerative changes in the cartilage. The results of this study could help surgeons in making clinical decisions when managing patients with meniscal injuries.

You might also be interested in these eBooks

Info:

Pages:

1-20

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. B. Seedhom and D. J. Hargreaves, Transmission of the Load in the Knee Joint with Special Reference to the Role of the Menisci,, Eng. Med., vol.8,no.4, p.220–228 ,(1979).

DOI: 10.1243/emed_jour_1979_008_051_02

Google Scholar

[2] P. S. Walker and M. J. Erkiuan, The Role of the Menisci in Force Transmission Across the Knee,, Clin. Orthop. Relat. Res., vol.109, p.184–192 ,(1975).

DOI: 10.1097/00003086-197506000-00027

Google Scholar

[3] K. L. Markolf, W. L. Bargar, S. C. Shoemaker, and H. C. Amstutz, The Role of Joint Load in Knee Stability,, J. Bone Jt. Surg. - Ser. A, vol.63,no.4, p.570–585 ,(1981).

DOI: 10.2106/00004623-198163040-00007

Google Scholar

[4] P. Renstrom and R. J. Johnson, Anatomy and Biochechanics of the Menisci,, Clin. Sports Med., vol.9,no.3, p.523–538 ,July 1, (1990).

Google Scholar

[5] A. M. Ahmed, The Load-Bearing Role of the Knee Menisci,, Knee Meniscus: Basic and Clinical Foundations, Raven Press, p.59–73 ,(1992).

Google Scholar

[6] A. M. Ahmed and D. L. Burke, In-Vitro of Measurement of Static Pressure Distribution in Synovial Joints—Part I: Tibial Surface of the Knee,, J. Biomech. Eng. ,(1983).

DOI: 10.1115/1.3138409

Google Scholar

[7] N. F. Sprague, Arthroscopic Meniscal Resection,, The Knee, p.527–57 ,(1994).

Google Scholar

[8] W. G. Rodkey, Basic Biology of the Meniscus and Response to Injury.,, Instr. Course Lect., vol.49, p.189–93 ,(2000).

Google Scholar

[9] M. Englund, E. M. Roos, and L. S. Lohmander, Impact of Type of Meniscal Tear on Radiographic and Symptomatic Knee Osteoarthritis: A Sixteen-Year Followup of Meniscectomy with Matched Controls,, Arthritis Rheum., vol.48, no.8, p.2178–2187, August (2003).

DOI: 10.1002/art.11088

Google Scholar

[10] Y. Dong, G. Hu, Y. Dong, Y. Hu, and Q. Xu, The Effect of Meniscal Tears and Resultant Partial Meniscectomies on the Knee Contact Stresses: A Finite Element Analysis,, Comput. Methods Biomech. Biomed. Engin., vol.17,no.13, p.1452–1463 ,(2014).

DOI: 10.1080/10255842.2012.753063

Google Scholar

[11] K. Zhang et al., Effect of Degenerative and Radial Tears of the Meniscus and Resultant Meniscectomy on the Knee Joint: A Finite Element Analysis,, J. Orthop. Transl., ,no.January, p.1–12 ,January (2019).

Google Scholar

[12] A. E. Kedgley, T. H. Saw, N. A. Segal, U. N. Hansen, A. M. J. Bull, and S. D. Masouros, Predicting Meniscal Tear Stability across Knee-Joint Flexion Using Finite-Element Analysis,, Knee Surgery, Sport. Traumatol. Arthrosc., vol.0,no.0, p.0 ,(2018).

DOI: 10.1007/s00167-018-5090-4

Google Scholar

[13] E. Peña, B. Calvo, M. A. Martínez, D. Palanca, and M. Doblaré, Finite Element Analysis of the Effect of Meniscal Tears and Meniscectomies on Human Knee Biomechanics,, Clin. Biomech. ,(2005).

DOI: 10.1016/j.clinbiomech.2005.01.009

Google Scholar

[14] B. Zielinska and T. L. Haut Donahue, 3D Finite Element Model of Meniscectomy: Changes in Joint Contact Behavior,, J. Biomech. Eng., vol.128,no.1, p.115–123, (2006).

DOI: 10.1115/1.2132370

Google Scholar

[15] J. Y. Bae, K. S. Park, J. K. Seon, D. S. Kwak, I. Jeon, and E. K. Song, Biomechanical Analysis of the Effects of Medial Meniscectomy on Degenerative Osteoarthritis,, Med. Biol. Eng. Comput. ,(2012).

DOI: 10.1007/s11517-011-0840-1

Google Scholar

[16] D. Hedeker, R. D. Gibbons, and C. Waternaux, Sample Size Estimation for Longitudinal Designs with Attrition: Comparing Time-Related Contrasts Between Two Groups,, J. Educ. Behav. Stat., vol.24,no.1, p.70–93 ,March 26, (1999).

DOI: 10.2307/1165262

Google Scholar

[17] J. M. Cottrell, P. Scholten, T. Wanich, R. F. Warren, T. M. Wright, and S. A. Maher, A New Technique to Measure the Dynamic Contact Pressures on the Tibial Plateau,, J. Biomech. ,(2008).

DOI: 10.1016/j.jbiomech.2008.04.024

Google Scholar

[18] T. B. Johnston and J. Whillis, Gray's Anatomy, Longmans Green & Co ,(1949).

Google Scholar

[19] T. L. Haut Donahue and M. L. Hull, A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact,, J. Biomech. Eng., vol.124,no.3, p.273 ,(2002).

DOI: 10.1115/1.1470171

Google Scholar

[20] X. L. Lu and V. C. Mow, Biomechanics of Articular Cartilage and Determination of Material Properties,, Med. Sci. Sports Exerc., vol.40,no.2, p.193–199 ,(2008).

DOI: 10.1249/mss.0b013e31815cb1fc

Google Scholar

[21] G. Li, J. Gil, A. Kanamori, and S. L. Woo, A Validated Three-Dimensional Computational Model of a Human Knee Joint.,, J. Biomech. Eng. ,(1999).

Google Scholar

[22] S. L. Y. Woo, S. D. Abramowitch, R. Kilger, and R. Liang, Biomechanics of Knee Ligaments: Injury, Healing, and Repair,, J. Biomech. ,(2006).

DOI: 10.1016/j.jbiomech.2004.10.025

Google Scholar

[23] C. G. Armstrong, W. M. Lai, and V. C. Mow, An Analysis of the Unconfined Compression of Articular Cartilage,, J. Biomech. Eng., vol.106,no.2, p.165 ,May 1, (1984).

DOI: 10.1115/1.3138475

Google Scholar

[24] G. Li, O. Lopez, and H. Rubash, Variability of a Three-Dimensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis,, J. Biomech. Eng. ,(2001).

DOI: 10.1115/1.1385841

Google Scholar

[25] P. S. Donzelli, R. L. Spilker, G. A. Ateshian, and V. C. Mow, Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations with Tissue Failure.,, J. Biomech., vol.32,no.10, p.1037–47 ,October (1999).

DOI: 10.1016/s0021-9290(99)00106-2

Google Scholar

[26] M. Z. Bendjaballah, A. Shirazi-Adi, and D. J. Zukor, Biomechanics of the Human Knee Joint in Compression: Reconstruction, Mesh Generation and Finite Element Analysis,, vol.2,no.2, p.69–79 ,(1995).

DOI: 10.1016/0968-0160(95)00018-k

Google Scholar

[27] N. Yang, H. Nayeb-Hashemi, and P. K. Canavan, The Combined Effect of Frontal Plane Tibiofemoral Knee Angle and Meniscectomy on the Cartilage Contact Stresses and Strains,, Ann. Biomed. Eng., vol.37,no.11, p.2360–2372 ,November 19, (2009).

DOI: 10.1007/s10439-009-9781-3

Google Scholar

[28] J. A. Weiss and J. C. Gardiner, Computational Modeling of Ligament Mechanics,, Crit. Rev. Biomed. Eng. ,(2001).

Google Scholar

[29] S. Sathasivam and P. S. Walker, A Computer Model with Surface Friction for the Prediction of Total Knee Kinematics,, J. Biomech. ,(1997).

Google Scholar

[30] G. W. Brown, Standard Deviation, Standard Error: Which 'Standard' Should We Use?,, Am. J. Dis. Child., vol.136,no.10, p.937–941 ,October 1, (1982).

DOI: 10.1001/archpedi.1982.03970460067015

Google Scholar

[31] H. Fukubayashi, T., & Kurosawa, The Contact Area and Pressure Distribution Pattern of the Knee: A Study of Normal and Osteoarthrotic Knee Joints,, Acta Orthop. Scand., vol.51,no.1–6, p.871–879 ,(1980).

DOI: 10.3109/17453678008990887

Google Scholar

[32] W. William C. and Z. Ronald F., Biomechanics of Musculoskeletal Injury, Second Edition, Human Kinetics; Second Edition edition, (2008).

Google Scholar

[33] J. B. Morrison, The Mechanics of the Knee Joint in Relation to Normal Walking,, J. Biomech., vol.3,no.1, p.51–61 ,(1970).

Google Scholar

[34] A. Chang et al., Hip Abduction Moment and Protection against Medial Tibiofemoral Osteoarthritis Progression,, Arthritis Rheum., vol.52,no.11, p.3515–3519 ,(2005).

DOI: 10.1002/art.21406

Google Scholar

[35] D. B. Kettelkamp and A. W. Jacobs, Tibiofemoral Contact Area--Determination and Implications.,, J. Bone Joint Surg. Am., vol.54,no.2, p.349–56 ,March (1972).

DOI: 10.2106/00004623-197254020-00013

Google Scholar

[36] A. P. Newman, A. U. Daniels, and R. T. Burks, Principles and Decision Making in Meniscal Surgery.,, Arthrosc. J. Arthrosc. Relat. Surg., vol.9,no.1, p.33–51 ,(1993).

Google Scholar

[37] A. Pozzi, C. A. Tonks, and H. Y. Ling, Femorotibial Contact Mechanics and Meniscal Strain after Serial Meniscectomy,, Vet. Surg., vol.39,no.4, p.482–488 ,(2010).

DOI: 10.1111/j.1532-950x.2010.00668.x

Google Scholar

[38] D. G. Krause, W. R., Pope, M. H., Johnson, R. J., & Wilder, Mechanical Changes in the Knee after Meniscectomy,, . J. bone Jt. Surg., vol.58,no.5, p.599–604 ,(1976).

DOI: 10.2106/00004623-197658050-00003

Google Scholar

[39] J. S. Cox, C. E. Nye, W. W. Schaefer, and I. J. Woodstein, The Degenerative Effects of Partial and Total Resection of the Medial Meniscus in Dogs' Knees.,, Clin. Orthop. Relat. Res., ,no.109, p.178–83 ,(1975).

DOI: 10.1097/00003086-197506000-00026

Google Scholar

[40] T. J. Fairbank, KNEE JOINT CHANGES AFTER MENISCECTOMY,, J. Bone Joint Surg. Br., vol.30-B,no.4, p.664–670 ,February 21, (1948).

DOI: 10.1302/0301-620x.30b4.664

Google Scholar

[41] D. King, The Function of Semilunar Cartilages,, J Bone Jt. Surg, vol.18,no.4, p.1069–1076, (1936).

Google Scholar

[42] M. Englund, Meniscal Tear — a Feature of Osteoarthritis ,(2014).

Google Scholar

[43] S. J. Lee et al., Tibiofemoral Contact Mechanics after Serial Medial Meniscectomies in the Human Cadaveric Knee,, Am. J. Sports Med., vol.34,no.8, p.1334–1344 ,August (2006).

DOI: 10.1177/0363546506286786

Google Scholar