Electrospun Biomaterials’ Applications and Processing

Article Preview

Abstract:

One of the largest fields of application of electrospun materials is the biomedical field, including development of scaffolds for tissue engineering, drug delivery and wound healing. Electrospinning appears as a promising technique in terms of scaffolds composition and architecture, which is the main aspect of this review paper, with a special attention to natural polymers including collagen, fibrinogen, silk fibroin, chitosan, chitin etc. Thanks to the adaptability of the electrospinning process, versatile hybrid, custom tailored structure scaffolds have been reported. The same is achieved due to the vast biomaterials’ processability as well as modifications of the basic electrospinning set-up and its combination with other techniques, simultaneously or by post-processing.

You might also be interested in these eBooks

Info:

Pages:

91-100

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Zdraveva, J. Fang, B. Mijovic, T. Lin. Electrospun nanofibers, in: G. Bhat, editor. Structure and Properties of High-Performance Fibers, Elsevier, UK, 2017, pp.267-300.

DOI: 10.1016/b978-0-08-100550-7.00011-5

Google Scholar

[2] D. Annis, A. Bornat, R. Edwards, A. Higham, B. Loveday, J. Wilson, An elastomeric vascular prosthesis, ASAIO Journal, 24 (1978) 209-214.

Google Scholar

[3] A. Messina, L. De Bartolo. Polymeric Membranes for the Biofabrication of Tissues and Organs, in: G. Forgacs, W. Sun, (Eds.), Biofabrication, Elsevier, 2013, pp.81-94.

DOI: 10.1016/b978-1-4557-2852-7.00005-6

Google Scholar

[4] N.H.A. Ngadiman, M. Noordin, A. Idris, D. Kurniawan, A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions, Proc. Inst. Mech. Eng. H, 231 (2017) 597-616.

DOI: 10.1177/0954411917699021

Google Scholar

[5] A. Sensini, L. Cristofolini, Biofabrication of electrospun scaffolds for the regeneration of tendons and ligaments, Materials, 11 (2018) (1963).

DOI: 10.3390/ma11101963

Google Scholar

[6] L. Vogt, L. Liverani, J.A. Roether, A.R. Boccaccini, Electrospun zein fibers incorporating poly (glycerol sebacate) for soft tissue engineering, Nanomaterials, 8 (2018) 150.

DOI: 10.3390/nano8030150

Google Scholar

[7] A.E. Erickson, D. Edmondson, F.-C. Chang, D. Wood, A. Gong, S.L. Levengood, et al., High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning, Carbohydr. Polym., 134 (2015) 467-474.

DOI: 10.1016/j.carbpol.2015.07.097

Google Scholar

[8] A. Magiera, J. Markowski, E. Menaszek, J. Pilch, S. Blazewicz, PLA-based hybrid and composite electrospun fibrous scaffolds as potential materials for tissue engineering, J. Nanomater., 2017 (2017) 1-11.

DOI: 10.1155/2017/9246802

Google Scholar

[9] Z. Wu, B. Kong, R. Liu, W. Sun, S. Mi, Engineering of corneal tissue through an aligned PVA/collagen composite nanofibrous electrospun scaffold, Nanomaterials, 8 (2018) 124.

DOI: 10.3390/nano8020124

Google Scholar

[10] D. Liang, B.S. Hsiao, B. Chu, Functional electrospun nanofibrous scaffolds for biomedical applications, Adv. Drug Deliv. Rev., 59 (2007) 1392-1412.

DOI: 10.1016/j.addr.2007.04.021

Google Scholar

[11] Y. Luu, K. Kim, B. Hsiao, B. Chu, M. Hadjiargyrou, Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers, J. Controlled Release, 89 (2003) 341-353.

DOI: 10.1016/s0168-3659(03)00097-x

Google Scholar

[12] Y. Maghdouri-White, S. Petrova, N. Sori, S. Polk, H. Wriggers, R. Ogle, et al., Electrospun silk–collagen scaffolds and BMP-13 for ligament and tendon repair and regeneration, Biomed. Phys. Eng. Express., 4 (2018) 025013.

DOI: 10.1088/2057-1976/aa9c6f

Google Scholar

[13] L. Meng, O. Arnoult, M. Smith, G.E. Wnek, Electrospinning of in situ crosslinked collagen nanofibers, J. Mater. Chem., 22 (2012) 19412-19417.

DOI: 10.1039/c2jm31618h

Google Scholar

[14] A.J. Tabor, A. Robinson, B.I. Pinto, R.S. Kellar, Platelet rich plasma combined with an electrospun collagen scaffold: In-vivo and invitro wound healing effects, Clin. Res. Dermal Open Access, 3 (2016) 1-8.

DOI: 10.15226/2378-1726/3/2/00125

Google Scholar

[15] S. Agarwal, J.H. Wendorff, A. Greiner, Use of electrospinning technique for biomedical applications, Polymer, 49 (2008) 5603-5621.

DOI: 10.1016/j.polymer.2008.09.014

Google Scholar

[16] B. Kong, S. Mi, Electrospun scaffolds for corneal tissue engineering: A review, Materials, 9 (2016) 614.

Google Scholar

[17] D.A. Parry, J.M. Squire, Fibrous proteins: Coiled-coils, collagen and elastomers, first ed., Gulf Professional Publishing, (2005).

DOI: 10.1016/s0065-3233(05)70001-2

Google Scholar

[18] R.L. Reis, N.M. Neves, J.F. Mano, M.E. Gomes, A.P. Marques, H.S. Azevedo, Natural-based polymers for biomedical applications, Elsevier, (2008).

DOI: 10.1016/b978-1-84569-264-3.50034-2

Google Scholar

[19] G.E. Wnek, M.E. Carr, D.G. Simpson, G.L. Bowlin, Electrospinning of nanofiber fibrinogen structures, Nano Lett., 3 (2003) 213-216.

DOI: 10.1021/nl025866c

Google Scholar

[20] R.F. Doolittle, Fibrinogen and fibrin, Annu. Rev. Biochem, 53 (1984) 195-229.

DOI: 10.1146/annurev.bi.53.070184.001211

Google Scholar

[21] J.W. Weisel. Fibrinogen and fibrin, in: D. Parry, A. D., J.M. Squire, (Eds.), Advances in protein chemistry, 70, Elsevier, 2005, pp.247-299.

Google Scholar

[22] L.-D. Koh, Y. Cheng, C.-P. Teng, Y.-W. Khin, X.-J. Loh, S.-Y. Tee, et al., Structures, mechanical properties and applications of silk fibroin materials, Prog. Polym. Sci., 46 (2015) 86-110.

DOI: 10.1016/j.progpolymsci.2015.02.001

Google Scholar

[23] A.J. Meinel, K.E. Kubow, E. Klotzsch, M. Garcia-Fuentes, M.L. Smith, V. Vogel, et al., Optimization strategies for electrospun silk fibroin tissue engineering scaffolds, Biomaterials, 30 (2009) 3058-3067.

DOI: 10.1016/j.biomaterials.2009.01.054

Google Scholar

[24] P. Zhou, G. Li, Z. Shao, X. Pan, T. Yu, Structure of Bombyx mori silk fibroin based on the DFT chemical shift calculation, J. Phys. Chem. B, 105 (2001) 12469-12476.

DOI: 10.1021/jp0125395

Google Scholar

[25] C. Viney, From natural silks to new polymer fibres, J. Text. I., 91 (2000) 2-23.

Google Scholar

[26] P.K. Dutta, J. Dutta, V. Tripathi, Chitin and chitosan: Chemistry, properties and applications, J. Sci. Ind. Res., 63 (2004) 20-31.

Google Scholar

[27] S. Şenel, S.J. McClure, Potential applications of chitosan in veterinary medicine, Adv. Drug Deliv. Rev., 56 (2004) 1467-1480.

DOI: 10.1016/j.addr.2004.02.007

Google Scholar

[28] A. Hasan, A. Memic, N. Annabi, M. Hossain, A. Paul, M.R. Dokmeci, et al., Electrospun scaffolds for tissue engineering of vascular grafts, Acta Biomater., 10 (2014) 11-25.

DOI: 10.1016/j.actbio.2013.08.022

Google Scholar

[29] D.A. Parry, A.S. Craig. Collagen fibrils during development and maturation and their contribution to the mechanical attributes of connective tissue, Collagen, CRC Press, 2018, pp.1-23.

Google Scholar

[30] E.D. Boland, J.A. Matthews, K.J. Pawlowski, D.G. Simpson, G.E. Wnek, G.L. Bowlin, Electrospinning collagen and elastin: preliminary vascular tissue engineering, Front Biosci, 9 (2004) e32.

DOI: 10.2741/1313

Google Scholar

[31] L. Liverani, N. Raffel, A. Fattahi, A. Preis, I. Hoffmann, A.R. Boccaccini, et al., Electrospun patterned porous scaffolds for the support of ovarian follicles growth: a feasibility study, Sci. Rep., 9 (2019) 1-14.

DOI: 10.1038/s41598-018-37640-1

Google Scholar

[32] N.L.B.M. Yusof, A. Wee, L.Y. Lim, E. Khor, Flexible chitin films as potential wound‐dressing materials: Wound model studies, J. Biomed. Mater. Res. A, 66 (2003) 224-232.

DOI: 10.1002/jbm.a.10545

Google Scholar

[33] K.E. Park, H.K. Kang, S.J. Lee, B.-M. Min, W.H. Park, Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/chitin blend nanofibers, Biomacromolecules, 7 (2006) 635-643.

DOI: 10.1021/bm0509265

Google Scholar

[34] I. Jun, H.-S. Han, J.R. Edwards, H. Jeon, Electrospun fibrous scaffolds for tissue engineering: Viewpoints on architecture and fabrication, Int. J. Mol. Sci., 19 (2018) 745.

DOI: 10.3390/ijms19030745

Google Scholar

[35] R.J. Stoddard, A.L. Steger, A.K. Blakney, K.A. Woodrow, In pursuit of functional electrospun materials for clinical applications in humans, Ther. Deliv., 7 (2016) 387-409.

DOI: 10.4155/tde-2016-0017

Google Scholar

[36] S. Gnavi, B.E. Fornasari, C. Tonda-Turo, R. Laurano, M. Zanetti, G. Ciardelli, et al., The effect of electrospun gelatin fibers alignment on schwann cell and axon behavior and organization in the perspective of artificial nerve design, Int. J. Mol. Sci., 16 (2015) 12925-12942.

DOI: 10.3390/ijms160612925

Google Scholar

[37] E. Yu, J. Zhang, J. Thomson, L.-S. Turng, Fabrication and characterization of electrospun thermoplastic polyurethane/fibroin small-diameter vascular grafts for vascular tissue engineering, Int. Polym. Proc., 31 (2016) 638-646.

DOI: 10.3139/217.3247

Google Scholar

[38] D. Li, T. Wu, N. He, J. Wang, W. Chen, L. He, et al., Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration, Colloids Surf. B Biointerfaces, 121 (2014) 432-443.

DOI: 10.1016/j.colsurfb.2014.06.034

Google Scholar

[39] S.N. Hanumantharao, C. Que, S. Rao, Self-assembly of 3D nanostructures in electrospun polycaprolactone-polyaniline fibers and their application as scaffolds for tissue engineering, Materialia, 6 (2019) 100296.

DOI: 10.1016/j.mtla.2019.100296

Google Scholar

[40] C. Yang, G. Deng, W. Chen, X. Ye, X. Mo, A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering, Colloids Surf. B Biointerfaces, 122 (2014) 270-276.

DOI: 10.1016/j.colsurfb.2014.06.061

Google Scholar

[41] D. Kai, M.P. Prabhakaran, B. Stahl, M. Eblenkamp, E. Wintermantel, S. Ramakrishna, Mechanical properties and in vitro behavior of nanofiber–hydrogel composites for tissue engineering applications, Nanotechnology, 23 (2012) 095705.

DOI: 10.1088/0957-4484/23/9/095705

Google Scholar

[42] X.-Y. Dai, W. Nie, Y.-C. Wang, Y. Shen, Y. Li, S.-J. Gan, Electrospun emodin polyvinylpyrrolidone blended nanofibrous membrane: a novel medicated biomaterial for drug delivery and accelerated wound healing, J. Mater. Sci. Mater. Med., 23 (2012) 2709-2716.

DOI: 10.1007/s10856-012-4728-x

Google Scholar

[43] J. Hu, M.P. Prabhakaran, L. Tian, X. Ding, S. Ramakrishna, Drug-loaded emulsion electrospun nanofibers: characterization, drug release and in vitro biocompatibility, RSC Advances, 5 (2015) 100256-100267.

DOI: 10.1039/c5ra18535a

Google Scholar

[44] J.S. Choi, K.W. Leong, H.S. Yoo, In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF), Biomaterials, 29 (2008) 587-596.

DOI: 10.1016/j.biomaterials.2007.10.012

Google Scholar

[45] I. Liao, S. Chew, K. Leong, Aligned core–shell nanofibers delivering bioactive proteins, (2006).

DOI: 10.2217/17435889.1.4.465

Google Scholar

[46] H.R. Munj, J.J. Lannutti, D.L. Tomasko, Understanding drug release from PCL/gelatin electrospun blends, J. Biomater. Appl., 31 (2017) 933-949.

DOI: 10.1177/0885328216673555

Google Scholar

[47] X. Yan, J. Marini, R. Mulligan, A. Deleault, U. Sharma, M.P. Brenner, et al., Slit-surface electrospinning: a novel process developed for high-throughput fabrication of core-sheath fibers, PLoS One, 10 (2015) 1-11.

DOI: 10.1371/journal.pone.0125407

Google Scholar

[48] K. Wei, Y. Li, X. Lei, H. Yang, A. Teramoto, J. Yao, et al., Emulsion Electrospinning of a Collagen‐Like Protein/PLGA Fibrous Scaffold: Empirical Modeling and Preliminary Release Assessment of Encapsulated Protein, Macromolecular bioscience, 11 (2011) 1526-1536.

DOI: 10.1002/mabi.201100141

Google Scholar

[49] L. Viry, S.E. Moulton, T. Romeo, C. Suhr, D. Mawad, M. Cook, et al., Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs, J. Mater. Chem., 22 (2012) 11347-11353.

DOI: 10.1039/c2jm31069d

Google Scholar

[50] H.S. Yoo, T.G. Kim, T.G. Park, Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery, Adv. Drug Deliv. Rev., 61 (2009) 1033-1042.

DOI: 10.1016/j.addr.2009.07.007

Google Scholar

[51] K. Ye, H. Kuang, Z. You, Y. Morsi, X. Mo, Electrospun nanofibers for tissue engineering with drug loading and release, Pharmaceutics, 11 (2019) 182.

DOI: 10.3390/pharmaceutics11040182

Google Scholar

[52] S. Jiang, B.C. Ma, W. Huang, A. Kaltbeitzel, G. Kizisavas, D. Crespy, et al., Visible light active nanofibrous membrane for antibacterial wound dressing, Nanoscale Horiz., 3 (2018) 439-446.

DOI: 10.1039/c8nh00021b

Google Scholar

[53] A. Wang, C. Xu, C. Zhang, Y. Gan, B. Wang, Experimental investigation of the properties of electrospun nanofibers for potential medical application, J. Nanomater., 2015 (2015) 8 pages.

Google Scholar

[54] J.S. Boateng, K.H. Matthews, H.N. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: a review, J. Pharm. Sci., 97 (2008) 2892-2923.

DOI: 10.1002/jps.21210

Google Scholar

[55] Y. Zhang, C.T. Lim, S. Ramakrishna, Z.-M. Huang, Recent development of polymer nanofibers for biomedical and biotechnological applications, J. Mater. Sci. Mater. Med., 16 (2005) 933-946.

DOI: 10.1007/s10856-005-4428-x

Google Scholar

[56] R.M. Abdel-Rahman, A. Abdel-Mohsen, R. Hrdina, L. Burgert, Z. Fohlerová, D. Pavliňák, et al., Wound dressing based on chitosan/hyaluronan/nonwoven fabrics: Preparation, characterization and medical applications, Int. J. Biol. Macromol., 89 (2016) 725-736.

DOI: 10.1016/j.ijbiomac.2016.04.087

Google Scholar

[57] T. Sonia, C.P. Sharma, In vitro evaluation of N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan for oral insulin delivery, Carbohydr. Polym., 84 (2011) 103-109.

DOI: 10.1016/j.carbpol.2010.10.070

Google Scholar

[58] M.R. Ladd, S.J. Lee, J.D. Stitzel, A. Atala, J.J. Yoo, Co-electrospun dual scaffolding system with potential for muscle–tendon junction tissue engineering, Biomaterials, 32 (2011) 1549-1559.

DOI: 10.1016/j.biomaterials.2010.10.038

Google Scholar

[59] N. Vitchuli, Q. Shi, J. Nowak, K. Kay, J.M. Caldwell, F. Breidt, et al., Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning–electrospraying hybrid process for use in protective applications, Sci. Technol. Adv. Mat., 12 (2011) 055004.

DOI: 10.1088/1468-6996/12/5/055004

Google Scholar

[60] S. Kidoaki, I.K. Kwon, T. Matsuda, Mesoscopic spatial designs of nano-and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques, Biomaterials, 26 (2005) 37-46.

DOI: 10.1016/j.biomaterials.2004.01.063

Google Scholar

[61] Y. Yokoyama, S. Hattori, C. Yoshikawa, Y. Yasuda, H. Koyama, T. Takato, et al., Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric, Mater. Lett., 63 (2009) 754-756.

DOI: 10.1016/j.matlet.2008.12.042

Google Scholar

[62] R.P. de Oliveira Santos, L.A. Ramos, E. Frollini, Cellulose and/or lignin in fiber-aligned electrospun PET mats: the influence on materials end-properties, Cellulose, 26 (2019) 617-630.

DOI: 10.1007/s10570-018-02234-7

Google Scholar

[63] D. Li, Y. Wang, Y. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano Lett., 3 (2003) 1167-1171.

DOI: 10.1021/nl0344256

Google Scholar

[64] E. Zdraveva, B. Mijović, E. Govorčin Bajsić, I. Slivac, T. Holjevac Grgurić, A. Tomljenović, et al., Electrospun PCL/cefuroxime scaffolds with custom tailored topography, Journal of Experimental Nanoscience, 14 (2019) 41-55.

DOI: 10.1080/17458080.2019.1633465

Google Scholar

[65] A.K. Higham, C. Tang, A.M. Landry, M.C. Pridgeon, E.M. Lee, A.L. Andrady, et al., Foam electrospinning: A multiple jet, needle‐less process for nanofiber production, AlChE J., 60 (2014) 1355-1364.

DOI: 10.1002/aic.14381

Google Scholar

[66] M. Simonet, O.D. Schneider, P. Neuenschwander, W.J. Stark, Ultraporous 3D polymer meshes by low‐temperature electrospinning: use of ice crystals as a removable void template, Polym. Eng. Sci., 47 (2007) 2020-2026.

DOI: 10.1002/pen.20914

Google Scholar

[67] P. Uttayarat, A. Perets, M. Li, P. Pimton, S.J. Stachelek, I. Alferiev, et al., Micropatterning of three-dimensional electrospun polyurethane vascular grafts, Acta Biomater., 6 (2010) 4229-4237.

DOI: 10.1016/j.actbio.2010.06.008

Google Scholar

[68] J. Jiang, M.A. Carlson, M.J. Teusink, H. Wang, M.R. MacEwan, J. Xie, Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique, ACS Biomater. Sci. Eng., 1 (2015) 991-1001.

DOI: 10.1021/acsbiomaterials.5b00238

Google Scholar

[69] X. Liu, S. Liu, S. Liu, W. Cui, Evaluation of oriented electrospun fibers for periosteal flap regeneration in biomimetic triphasic osteochondral implant, J. Biomed. Mater. Res. B Appl. Biomater., 102 (2014) 1407-1414.

DOI: 10.1002/jbm.b.33119

Google Scholar

[70] J. Nam, Y. Huang, S. Agarwal, J. Lannutti, Improved cellular infiltration in electrospun fiber via engineered porosity, Tissue Eng., 13 (2007) 2249-2257.

DOI: 10.1089/ten.2006.0306

Google Scholar

[71] Y.H. Lee, J.H. Lee, I.-G. An, C. Kim, D.S. Lee, Y.K. Lee, et al., Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds, Biomaterials, 26 (2005) 3165-3172.

DOI: 10.1016/j.biomaterials.2004.08.018

Google Scholar

[72] W. Zhu, N.J. Castro, X. Cheng, M. Keidar, L.G. Zhang, Cold atmospheric plasma modified electrospun scaffolds with embedded microspheres for improved cartilage regeneration, PLoS One, 10 (2015) 1-18.

DOI: 10.1371/journal.pone.0134729

Google Scholar

[73] S. Zaiss, T.D. Brown, J.C. Reichert, A. Berner, Poly (ε-caprolactone) scaffolds fabricated by melt electrospinning for bone tissue engineering, Materials, 9 (2016) 232.

DOI: 10.3390/ma9040232

Google Scholar