[1]
E. Zdraveva, J. Fang, B. Mijovic, T. Lin. Electrospun nanofibers, in: G. Bhat, editor. Structure and Properties of High-Performance Fibers, Elsevier, UK, 2017, pp.267-300.
DOI: 10.1016/b978-0-08-100550-7.00011-5
Google Scholar
[2]
D. Annis, A. Bornat, R. Edwards, A. Higham, B. Loveday, J. Wilson, An elastomeric vascular prosthesis, ASAIO Journal, 24 (1978) 209-214.
Google Scholar
[3]
A. Messina, L. De Bartolo. Polymeric Membranes for the Biofabrication of Tissues and Organs, in: G. Forgacs, W. Sun, (Eds.), Biofabrication, Elsevier, 2013, pp.81-94.
DOI: 10.1016/b978-1-4557-2852-7.00005-6
Google Scholar
[4]
N.H.A. Ngadiman, M. Noordin, A. Idris, D. Kurniawan, A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions, Proc. Inst. Mech. Eng. H, 231 (2017) 597-616.
DOI: 10.1177/0954411917699021
Google Scholar
[5]
A. Sensini, L. Cristofolini, Biofabrication of electrospun scaffolds for the regeneration of tendons and ligaments, Materials, 11 (2018) (1963).
DOI: 10.3390/ma11101963
Google Scholar
[6]
L. Vogt, L. Liverani, J.A. Roether, A.R. Boccaccini, Electrospun zein fibers incorporating poly (glycerol sebacate) for soft tissue engineering, Nanomaterials, 8 (2018) 150.
DOI: 10.3390/nano8030150
Google Scholar
[7]
A.E. Erickson, D. Edmondson, F.-C. Chang, D. Wood, A. Gong, S.L. Levengood, et al., High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning, Carbohydr. Polym., 134 (2015) 467-474.
DOI: 10.1016/j.carbpol.2015.07.097
Google Scholar
[8]
A. Magiera, J. Markowski, E. Menaszek, J. Pilch, S. Blazewicz, PLA-based hybrid and composite electrospun fibrous scaffolds as potential materials for tissue engineering, J. Nanomater., 2017 (2017) 1-11.
DOI: 10.1155/2017/9246802
Google Scholar
[9]
Z. Wu, B. Kong, R. Liu, W. Sun, S. Mi, Engineering of corneal tissue through an aligned PVA/collagen composite nanofibrous electrospun scaffold, Nanomaterials, 8 (2018) 124.
DOI: 10.3390/nano8020124
Google Scholar
[10]
D. Liang, B.S. Hsiao, B. Chu, Functional electrospun nanofibrous scaffolds for biomedical applications, Adv. Drug Deliv. Rev., 59 (2007) 1392-1412.
DOI: 10.1016/j.addr.2007.04.021
Google Scholar
[11]
Y. Luu, K. Kim, B. Hsiao, B. Chu, M. Hadjiargyrou, Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers, J. Controlled Release, 89 (2003) 341-353.
DOI: 10.1016/s0168-3659(03)00097-x
Google Scholar
[12]
Y. Maghdouri-White, S. Petrova, N. Sori, S. Polk, H. Wriggers, R. Ogle, et al., Electrospun silk–collagen scaffolds and BMP-13 for ligament and tendon repair and regeneration, Biomed. Phys. Eng. Express., 4 (2018) 025013.
DOI: 10.1088/2057-1976/aa9c6f
Google Scholar
[13]
L. Meng, O. Arnoult, M. Smith, G.E. Wnek, Electrospinning of in situ crosslinked collagen nanofibers, J. Mater. Chem., 22 (2012) 19412-19417.
DOI: 10.1039/c2jm31618h
Google Scholar
[14]
A.J. Tabor, A. Robinson, B.I. Pinto, R.S. Kellar, Platelet rich plasma combined with an electrospun collagen scaffold: In-vivo and invitro wound healing effects, Clin. Res. Dermal Open Access, 3 (2016) 1-8.
DOI: 10.15226/2378-1726/3/2/00125
Google Scholar
[15]
S. Agarwal, J.H. Wendorff, A. Greiner, Use of electrospinning technique for biomedical applications, Polymer, 49 (2008) 5603-5621.
DOI: 10.1016/j.polymer.2008.09.014
Google Scholar
[16]
B. Kong, S. Mi, Electrospun scaffolds for corneal tissue engineering: A review, Materials, 9 (2016) 614.
Google Scholar
[17]
D.A. Parry, J.M. Squire, Fibrous proteins: Coiled-coils, collagen and elastomers, first ed., Gulf Professional Publishing, (2005).
DOI: 10.1016/s0065-3233(05)70001-2
Google Scholar
[18]
R.L. Reis, N.M. Neves, J.F. Mano, M.E. Gomes, A.P. Marques, H.S. Azevedo, Natural-based polymers for biomedical applications, Elsevier, (2008).
DOI: 10.1016/b978-1-84569-264-3.50034-2
Google Scholar
[19]
G.E. Wnek, M.E. Carr, D.G. Simpson, G.L. Bowlin, Electrospinning of nanofiber fibrinogen structures, Nano Lett., 3 (2003) 213-216.
DOI: 10.1021/nl025866c
Google Scholar
[20]
R.F. Doolittle, Fibrinogen and fibrin, Annu. Rev. Biochem, 53 (1984) 195-229.
DOI: 10.1146/annurev.bi.53.070184.001211
Google Scholar
[21]
J.W. Weisel. Fibrinogen and fibrin, in: D. Parry, A. D., J.M. Squire, (Eds.), Advances in protein chemistry, 70, Elsevier, 2005, pp.247-299.
Google Scholar
[22]
L.-D. Koh, Y. Cheng, C.-P. Teng, Y.-W. Khin, X.-J. Loh, S.-Y. Tee, et al., Structures, mechanical properties and applications of silk fibroin materials, Prog. Polym. Sci., 46 (2015) 86-110.
DOI: 10.1016/j.progpolymsci.2015.02.001
Google Scholar
[23]
A.J. Meinel, K.E. Kubow, E. Klotzsch, M. Garcia-Fuentes, M.L. Smith, V. Vogel, et al., Optimization strategies for electrospun silk fibroin tissue engineering scaffolds, Biomaterials, 30 (2009) 3058-3067.
DOI: 10.1016/j.biomaterials.2009.01.054
Google Scholar
[24]
P. Zhou, G. Li, Z. Shao, X. Pan, T. Yu, Structure of Bombyx mori silk fibroin based on the DFT chemical shift calculation, J. Phys. Chem. B, 105 (2001) 12469-12476.
DOI: 10.1021/jp0125395
Google Scholar
[25]
C. Viney, From natural silks to new polymer fibres, J. Text. I., 91 (2000) 2-23.
Google Scholar
[26]
P.K. Dutta, J. Dutta, V. Tripathi, Chitin and chitosan: Chemistry, properties and applications, J. Sci. Ind. Res., 63 (2004) 20-31.
Google Scholar
[27]
S. Şenel, S.J. McClure, Potential applications of chitosan in veterinary medicine, Adv. Drug Deliv. Rev., 56 (2004) 1467-1480.
DOI: 10.1016/j.addr.2004.02.007
Google Scholar
[28]
A. Hasan, A. Memic, N. Annabi, M. Hossain, A. Paul, M.R. Dokmeci, et al., Electrospun scaffolds for tissue engineering of vascular grafts, Acta Biomater., 10 (2014) 11-25.
DOI: 10.1016/j.actbio.2013.08.022
Google Scholar
[29]
D.A. Parry, A.S. Craig. Collagen fibrils during development and maturation and their contribution to the mechanical attributes of connective tissue, Collagen, CRC Press, 2018, pp.1-23.
Google Scholar
[30]
E.D. Boland, J.A. Matthews, K.J. Pawlowski, D.G. Simpson, G.E. Wnek, G.L. Bowlin, Electrospinning collagen and elastin: preliminary vascular tissue engineering, Front Biosci, 9 (2004) e32.
DOI: 10.2741/1313
Google Scholar
[31]
L. Liverani, N. Raffel, A. Fattahi, A. Preis, I. Hoffmann, A.R. Boccaccini, et al., Electrospun patterned porous scaffolds for the support of ovarian follicles growth: a feasibility study, Sci. Rep., 9 (2019) 1-14.
DOI: 10.1038/s41598-018-37640-1
Google Scholar
[32]
N.L.B.M. Yusof, A. Wee, L.Y. Lim, E. Khor, Flexible chitin films as potential wound‐dressing materials: Wound model studies, J. Biomed. Mater. Res. A, 66 (2003) 224-232.
DOI: 10.1002/jbm.a.10545
Google Scholar
[33]
K.E. Park, H.K. Kang, S.J. Lee, B.-M. Min, W.H. Park, Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/chitin blend nanofibers, Biomacromolecules, 7 (2006) 635-643.
DOI: 10.1021/bm0509265
Google Scholar
[34]
I. Jun, H.-S. Han, J.R. Edwards, H. Jeon, Electrospun fibrous scaffolds for tissue engineering: Viewpoints on architecture and fabrication, Int. J. Mol. Sci., 19 (2018) 745.
DOI: 10.3390/ijms19030745
Google Scholar
[35]
R.J. Stoddard, A.L. Steger, A.K. Blakney, K.A. Woodrow, In pursuit of functional electrospun materials for clinical applications in humans, Ther. Deliv., 7 (2016) 387-409.
DOI: 10.4155/tde-2016-0017
Google Scholar
[36]
S. Gnavi, B.E. Fornasari, C. Tonda-Turo, R. Laurano, M. Zanetti, G. Ciardelli, et al., The effect of electrospun gelatin fibers alignment on schwann cell and axon behavior and organization in the perspective of artificial nerve design, Int. J. Mol. Sci., 16 (2015) 12925-12942.
DOI: 10.3390/ijms160612925
Google Scholar
[37]
E. Yu, J. Zhang, J. Thomson, L.-S. Turng, Fabrication and characterization of electrospun thermoplastic polyurethane/fibroin small-diameter vascular grafts for vascular tissue engineering, Int. Polym. Proc., 31 (2016) 638-646.
DOI: 10.3139/217.3247
Google Scholar
[38]
D. Li, T. Wu, N. He, J. Wang, W. Chen, L. He, et al., Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration, Colloids Surf. B Biointerfaces, 121 (2014) 432-443.
DOI: 10.1016/j.colsurfb.2014.06.034
Google Scholar
[39]
S.N. Hanumantharao, C. Que, S. Rao, Self-assembly of 3D nanostructures in electrospun polycaprolactone-polyaniline fibers and their application as scaffolds for tissue engineering, Materialia, 6 (2019) 100296.
DOI: 10.1016/j.mtla.2019.100296
Google Scholar
[40]
C. Yang, G. Deng, W. Chen, X. Ye, X. Mo, A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering, Colloids Surf. B Biointerfaces, 122 (2014) 270-276.
DOI: 10.1016/j.colsurfb.2014.06.061
Google Scholar
[41]
D. Kai, M.P. Prabhakaran, B. Stahl, M. Eblenkamp, E. Wintermantel, S. Ramakrishna, Mechanical properties and in vitro behavior of nanofiber–hydrogel composites for tissue engineering applications, Nanotechnology, 23 (2012) 095705.
DOI: 10.1088/0957-4484/23/9/095705
Google Scholar
[42]
X.-Y. Dai, W. Nie, Y.-C. Wang, Y. Shen, Y. Li, S.-J. Gan, Electrospun emodin polyvinylpyrrolidone blended nanofibrous membrane: a novel medicated biomaterial for drug delivery and accelerated wound healing, J. Mater. Sci. Mater. Med., 23 (2012) 2709-2716.
DOI: 10.1007/s10856-012-4728-x
Google Scholar
[43]
J. Hu, M.P. Prabhakaran, L. Tian, X. Ding, S. Ramakrishna, Drug-loaded emulsion electrospun nanofibers: characterization, drug release and in vitro biocompatibility, RSC Advances, 5 (2015) 100256-100267.
DOI: 10.1039/c5ra18535a
Google Scholar
[44]
J.S. Choi, K.W. Leong, H.S. Yoo, In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF), Biomaterials, 29 (2008) 587-596.
DOI: 10.1016/j.biomaterials.2007.10.012
Google Scholar
[45]
I. Liao, S. Chew, K. Leong, Aligned core–shell nanofibers delivering bioactive proteins, (2006).
DOI: 10.2217/17435889.1.4.465
Google Scholar
[46]
H.R. Munj, J.J. Lannutti, D.L. Tomasko, Understanding drug release from PCL/gelatin electrospun blends, J. Biomater. Appl., 31 (2017) 933-949.
DOI: 10.1177/0885328216673555
Google Scholar
[47]
X. Yan, J. Marini, R. Mulligan, A. Deleault, U. Sharma, M.P. Brenner, et al., Slit-surface electrospinning: a novel process developed for high-throughput fabrication of core-sheath fibers, PLoS One, 10 (2015) 1-11.
DOI: 10.1371/journal.pone.0125407
Google Scholar
[48]
K. Wei, Y. Li, X. Lei, H. Yang, A. Teramoto, J. Yao, et al., Emulsion Electrospinning of a Collagen‐Like Protein/PLGA Fibrous Scaffold: Empirical Modeling and Preliminary Release Assessment of Encapsulated Protein, Macromolecular bioscience, 11 (2011) 1526-1536.
DOI: 10.1002/mabi.201100141
Google Scholar
[49]
L. Viry, S.E. Moulton, T. Romeo, C. Suhr, D. Mawad, M. Cook, et al., Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs, J. Mater. Chem., 22 (2012) 11347-11353.
DOI: 10.1039/c2jm31069d
Google Scholar
[50]
H.S. Yoo, T.G. Kim, T.G. Park, Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery, Adv. Drug Deliv. Rev., 61 (2009) 1033-1042.
DOI: 10.1016/j.addr.2009.07.007
Google Scholar
[51]
K. Ye, H. Kuang, Z. You, Y. Morsi, X. Mo, Electrospun nanofibers for tissue engineering with drug loading and release, Pharmaceutics, 11 (2019) 182.
DOI: 10.3390/pharmaceutics11040182
Google Scholar
[52]
S. Jiang, B.C. Ma, W. Huang, A. Kaltbeitzel, G. Kizisavas, D. Crespy, et al., Visible light active nanofibrous membrane for antibacterial wound dressing, Nanoscale Horiz., 3 (2018) 439-446.
DOI: 10.1039/c8nh00021b
Google Scholar
[53]
A. Wang, C. Xu, C. Zhang, Y. Gan, B. Wang, Experimental investigation of the properties of electrospun nanofibers for potential medical application, J. Nanomater., 2015 (2015) 8 pages.
Google Scholar
[54]
J.S. Boateng, K.H. Matthews, H.N. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: a review, J. Pharm. Sci., 97 (2008) 2892-2923.
DOI: 10.1002/jps.21210
Google Scholar
[55]
Y. Zhang, C.T. Lim, S. Ramakrishna, Z.-M. Huang, Recent development of polymer nanofibers for biomedical and biotechnological applications, J. Mater. Sci. Mater. Med., 16 (2005) 933-946.
DOI: 10.1007/s10856-005-4428-x
Google Scholar
[56]
R.M. Abdel-Rahman, A. Abdel-Mohsen, R. Hrdina, L. Burgert, Z. Fohlerová, D. Pavliňák, et al., Wound dressing based on chitosan/hyaluronan/nonwoven fabrics: Preparation, characterization and medical applications, Int. J. Biol. Macromol., 89 (2016) 725-736.
DOI: 10.1016/j.ijbiomac.2016.04.087
Google Scholar
[57]
T. Sonia, C.P. Sharma, In vitro evaluation of N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan for oral insulin delivery, Carbohydr. Polym., 84 (2011) 103-109.
DOI: 10.1016/j.carbpol.2010.10.070
Google Scholar
[58]
M.R. Ladd, S.J. Lee, J.D. Stitzel, A. Atala, J.J. Yoo, Co-electrospun dual scaffolding system with potential for muscle–tendon junction tissue engineering, Biomaterials, 32 (2011) 1549-1559.
DOI: 10.1016/j.biomaterials.2010.10.038
Google Scholar
[59]
N. Vitchuli, Q. Shi, J. Nowak, K. Kay, J.M. Caldwell, F. Breidt, et al., Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning–electrospraying hybrid process for use in protective applications, Sci. Technol. Adv. Mat., 12 (2011) 055004.
DOI: 10.1088/1468-6996/12/5/055004
Google Scholar
[60]
S. Kidoaki, I.K. Kwon, T. Matsuda, Mesoscopic spatial designs of nano-and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques, Biomaterials, 26 (2005) 37-46.
DOI: 10.1016/j.biomaterials.2004.01.063
Google Scholar
[61]
Y. Yokoyama, S. Hattori, C. Yoshikawa, Y. Yasuda, H. Koyama, T. Takato, et al., Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric, Mater. Lett., 63 (2009) 754-756.
DOI: 10.1016/j.matlet.2008.12.042
Google Scholar
[62]
R.P. de Oliveira Santos, L.A. Ramos, E. Frollini, Cellulose and/or lignin in fiber-aligned electrospun PET mats: the influence on materials end-properties, Cellulose, 26 (2019) 617-630.
DOI: 10.1007/s10570-018-02234-7
Google Scholar
[63]
D. Li, Y. Wang, Y. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano Lett., 3 (2003) 1167-1171.
DOI: 10.1021/nl0344256
Google Scholar
[64]
E. Zdraveva, B. Mijović, E. Govorčin Bajsić, I. Slivac, T. Holjevac Grgurić, A. Tomljenović, et al., Electrospun PCL/cefuroxime scaffolds with custom tailored topography, Journal of Experimental Nanoscience, 14 (2019) 41-55.
DOI: 10.1080/17458080.2019.1633465
Google Scholar
[65]
A.K. Higham, C. Tang, A.M. Landry, M.C. Pridgeon, E.M. Lee, A.L. Andrady, et al., Foam electrospinning: A multiple jet, needle‐less process for nanofiber production, AlChE J., 60 (2014) 1355-1364.
DOI: 10.1002/aic.14381
Google Scholar
[66]
M. Simonet, O.D. Schneider, P. Neuenschwander, W.J. Stark, Ultraporous 3D polymer meshes by low‐temperature electrospinning: use of ice crystals as a removable void template, Polym. Eng. Sci., 47 (2007) 2020-2026.
DOI: 10.1002/pen.20914
Google Scholar
[67]
P. Uttayarat, A. Perets, M. Li, P. Pimton, S.J. Stachelek, I. Alferiev, et al., Micropatterning of three-dimensional electrospun polyurethane vascular grafts, Acta Biomater., 6 (2010) 4229-4237.
DOI: 10.1016/j.actbio.2010.06.008
Google Scholar
[68]
J. Jiang, M.A. Carlson, M.J. Teusink, H. Wang, M.R. MacEwan, J. Xie, Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique, ACS Biomater. Sci. Eng., 1 (2015) 991-1001.
DOI: 10.1021/acsbiomaterials.5b00238
Google Scholar
[69]
X. Liu, S. Liu, S. Liu, W. Cui, Evaluation of oriented electrospun fibers for periosteal flap regeneration in biomimetic triphasic osteochondral implant, J. Biomed. Mater. Res. B Appl. Biomater., 102 (2014) 1407-1414.
DOI: 10.1002/jbm.b.33119
Google Scholar
[70]
J. Nam, Y. Huang, S. Agarwal, J. Lannutti, Improved cellular infiltration in electrospun fiber via engineered porosity, Tissue Eng., 13 (2007) 2249-2257.
DOI: 10.1089/ten.2006.0306
Google Scholar
[71]
Y.H. Lee, J.H. Lee, I.-G. An, C. Kim, D.S. Lee, Y.K. Lee, et al., Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds, Biomaterials, 26 (2005) 3165-3172.
DOI: 10.1016/j.biomaterials.2004.08.018
Google Scholar
[72]
W. Zhu, N.J. Castro, X. Cheng, M. Keidar, L.G. Zhang, Cold atmospheric plasma modified electrospun scaffolds with embedded microspheres for improved cartilage regeneration, PLoS One, 10 (2015) 1-18.
DOI: 10.1371/journal.pone.0134729
Google Scholar
[73]
S. Zaiss, T.D. Brown, J.C. Reichert, A. Berner, Poly (ε-caprolactone) scaffolds fabricated by melt electrospinning for bone tissue engineering, Materials, 9 (2016) 232.
DOI: 10.3390/ma9040232
Google Scholar