[1]
J.D. Brain, Inhalation, Deposition, and Fate of Insulin and Other Therapeutic Proteins, Diabetes Technol. Ther,9, 4 ( 2007).
Google Scholar
[2]
Z. Antosova, M. Mackova, V. Kral, T. Macek, Therapeutic application of peptides and proteins: parenteral forever?, Trends Biotechnol, 27, 628, (2009).
DOI: 10.1016/j.tibtech.2009.07.009
Google Scholar
[3]
Sh.Z. Tapdiqov, N.A. Zeynalov, D.B. Taghiyev, etc. Chitosan Polymer Composite material Containing of Silver Nanoparticle, D.J. Nano.Biostruc., 11, 39, (2016).
Google Scholar
[4]
Sh. Z. Tapdiqov, S.F. Safaraliyeva, P.Theato, N.A. Zeynalov, D.B. Tagiyev, M.G. Raucci, M.X. Hasanova. Synthesis of N,N-Diethyl, N-Methyl Chitosan Chloride with Certain Quaternization Degree and Molecular Spectroscopic and Thermo-Morphological Study of the Alkylation. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 39, 77, (2018).
DOI: 10.4028/www.scientific.net/jbbbe.39.77
Google Scholar
[5]
T. Wurch, A. Pierre, S. Depil, Novel protein scaffolds as emerging therapeutic proteins: from discovery to clinical proof-of-concept, Trends Biotechnol, 30, 575, (2012).
DOI: 10.1016/j.tibtech.2012.07.006
Google Scholar
[6]
S. Gupta, A. Jain, M. Chakraborty, J.K. Sahni, etc. Oral delivery of therapeutic proteins and peptides: a review on recent developments, Drug Delivery, 20, 237, (2013).
DOI: 10.3109/10717544.2013.819611
Google Scholar
[7]
A. Kidane, P. P. Bhatt, Recent advances in small molecule drug delivery, Curr.Opin.Chem.Biol, 9, 347, (2005).
Google Scholar
[8]
L.W. Donald, Handbook of pharmaceutical controlled release technology, (2000).
Google Scholar
[9]
V. Jogani, K. Jinturkar, T. Vyas, etc, A. Recent patents review on intranasal administration for CNS drug delivery, Rec. Pat. Drug. Deliv.Formul, 2, 25, (2008).
DOI: 10.2174/187221108783331429
Google Scholar
[10]
N.A. Peppas, J. Z. Hilt, A. Khademhosseini, etc, Hydrogels in biology and medicine: from molecular principles to bionanotechnology, Adv. Mater,18, 1345, ( 2006).
DOI: 10.1002/adma.200501612
Google Scholar
[11]
J.B. Leach, C.E. Schmidt, Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds, Biomaterials, 26, 125, (2005).
DOI: 10.1016/j.biomaterials.2004.02.018
Google Scholar
[12]
H. Feil, Y. H. Bae, J. Feijen, S. W. Kim, Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers, Macromolecules, 26, 2496, (1993).
DOI: 10.1021/ma00062a016
Google Scholar
[13]
D. Schmaljohann, Thermo- and pH-responsive polymers in drug delivery, Adv.Drug Deliv. Rev, 58, 1655, (2006).
DOI: 10.1016/j.addr.2006.09.020
Google Scholar
[14]
I.K. Park, K. Singha, R.B. Arote, R.B, etc. pH-responsive polymers as gene carriers Macromol. Rapid Commun., 31, 1122, (2010).
DOI: 10.1002/marc.200900867
Google Scholar
[15]
M. A. Ward, T. K. Georgiou, Thermoresponsive polymers for biomedical applications, Polym., 3, 1215, (2011).
Google Scholar
[16]
V. Balamuralidhara , pH sensitive drug delivery systems: a review, Am. J. Drug Discov, 1, 24, (2001).
Google Scholar
[17]
F. Liu, M. W. Urban, Recent advances and challenges in designing stimuliresponsive polymers, Prog. Polym. Sci., 35, 3, (2010).
Google Scholar
[18]
J. H. Priya, R. A. John, K. R. Alex, Smart polymers for the controlled delivery of drugsea concise overview Acta Pharm. Sin, 4, 120, (2014).
Google Scholar
[19]
P. Watson, A. T. Jones, D. J. Stephens, Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells, Adv. Drug Deliv. Rev., 57, 43, (2005).
DOI: 10.1016/j.addr.2004.05.003
Google Scholar
[20]
Z. Liu, M. Zheng, F. Meng, Z. Zhong, Non-viral gene transfection in vitro using endosomal pH-sensitive reversibly hydrophobilized polyethylenimineBiomaterials, 32, 9109, (2011).
DOI: 10.1016/j.biomaterials.2011.08.017
Google Scholar
[21]
G. Chen, A. S. Hoffman, Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH, Nature, 373, 49, (1995).
DOI: 10.1038/373049a0
Google Scholar
[22]
B. Jeong, A. Gutowska, Lessons from nature: stimuliresponsive polymers and their biomedical applications, Trends Biotechnol., 20, 305, (2002).
Google Scholar
[23]
A.S. Hoffman, Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics, J. Control. Release, 6, 297, (1987).
Google Scholar
[24]
C. Booth, D. Attwood, Effects of block architecture and composition on the association properties of poly(oxyalkylene) copolymers in aqueous solution, Macromol. Rapid Commun.,21, 501, (2000).
DOI: 10.1002/1521-3927(20000601)21:9<501::aid-marc501>3.0.co;2-r
Google Scholar
[25]
M. Malmsten, B. Lindman, Self-assembly in aqueous block copolymer solutions, Macromolecules, 25, 5440, (1992).
DOI: 10.1021/ma00046a049
Google Scholar
[26]
L. Bromberg, J.Phys., Novel family of thermogelling materials via C–C bonding between poly(acrylic acid) and poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), Chem.,102, 1956, (1998).
DOI: 10.1021/jp9803687
Google Scholar
[27]
L. Ji-Yu, L. Po-Liang, L. Yuan-Kai, P. Sydney, etc., A poloxamer-polypeptide thermosensitive hydrogel as a cell scaffold and sustained release depot, Poly. Chemistry, 17, 2976, (2016).
DOI: 10.1039/c5py02067k
Google Scholar
[28]
H. Cui, X. Zhuang, C. He, Y. Wei, X. Chen, High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications, Acta Biomater., 11, 183, (2015).
DOI: 10.1016/j.actbio.2014.09.017
Google Scholar
[29]
D.J. Siegwart, J.K. Oh, K. Matyjaszewski, ATRP in the design of functional materials for biomedical applications, Prog Polym Sci, 37, 18, (2012).
Google Scholar
[30]
H.F.O. Silva, K.M.G. Lima, M.B. Cardoso, etc, Doxycycline conjugated with polyvinylpyrrolidone-encapsulated silver nanoparticles: a polymer's malevolent touch against Escherichia coli, RSC Adv., 82, 6886, (2015).
DOI: 10.1039/c5ra10880b
Google Scholar
[31]
Y.Y. Choi, M.K. Joo, Y.S. Sohn, B. Jeong, Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers, Soft Matter., 2008, 4, 2383-2387.
DOI: 10.1039/b809116a
Google Scholar
[32]
S. H. Park, B. G. Choi, H. J. Moon, S. H. Cho, B. Jeong, Biodegradable Thermogels. Accounts of Chemical Research, Soft Matter, 7, 6515, (2011).
Google Scholar
[33]
H. Shen, H. Shi, M. Xie, K. Ma, B. Li, etc. Biodegradable chitosan/alginate BSA-gel-capsules for pH-controlled loading and release of doxorubicin and treatment of pulmonary melanoma, Mater. Chem., 32, 3906, (2013).
DOI: 10.1039/c3tb20330a
Google Scholar
[34]
M. Barza, R. Brown, C. Shanks, etc, Relation between lipophilicity and pharmacological behavior of minocycline, doxycycline, tetracycline, and oxytetracycline in dogs, Antimicrob.Agents Chemo., 8, 713, (1975).
DOI: 10.1128/aac.8.6.713
Google Scholar
[35]
W. Qi, A. Wang, Y. Yang, M. Du, etc., The lectin binding and targetable cellular uptake of lipidcoated polysaccharide microcapsules, J. Mater. Chem., 20, 2121, (2010).
DOI: 10.1039/b920469p
Google Scholar
[36]
T. Higuchi, Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices, J. Pharm. Sci., 52, 1145, (1963).
DOI: 10.1002/jps.2600521210
Google Scholar
[37]
M. Donbrow, Y. Samuelov, Zero order drug delivery from doublelayered porous films: release rate profiles from ethyl cellulose, hydroxypropyl cellulose and polyethylene glycol mixtures, J.Pharm. Pharmacol., 32, 463, (1980).
DOI: 10.1111/j.2042-7158.1980.tb12970.x
Google Scholar
[38]
M. G. Albu, M. V. Ghica, L. Popa, Kinetics of in vitro release of doxycyline hyclate from collagen hydrogels, Revue Roumaine de Chimie, 54, 373, (2009).
Google Scholar