[1]
Carland, E. M., Stoddart, P. R., Cadusch, P. J., Fallon, J. B., & Wade, S. A. (2016), Medical Engineering & Physics, 38(2), 155-162.Another reference.
DOI: 10.1016/j.medengphy.2015.11.015
Google Scholar
[2]
Patrick, J. F., & MacFarlane, J. C. (1987). Annals of Otology, Rhinology & Laryngology, 96(1_suppl), 46-48.
Google Scholar
[3]
Stöver, T., & Lenarz, T. (2009). GMS current topics in otorhinolaryngology, head and neck surgery, 8.
Google Scholar
[4]
Emmons, M. C., Carman, G. P., Mohanchandra, K. P., & Richards, W. L. (2009, April). In Health Monitoring of Structural and Biological Systems 2009 (Vol. 7295, p. 72950C). International Society for Optics and Photonics.
Google Scholar
[5]
Clark GM. Cochlear implants: Fundamentals and applications. New York: Springer Verlag (2003).
Google Scholar
[6]
Clark GM. Personal reflections on the multichannel cochlear implant and a view of the future. J Rehabil Res Dev. 2008;45:651-94.
Google Scholar
[7]
Kha H, Chen, B. Finite element analysis of damage by cochlear implant electrode array's proximal section to the basilar membrane. Otol Neurotol. 2012;33:1176-80.
DOI: 10.1097/mao.0b013e318263545f
Google Scholar
[8]
Chen BK, Clark, G.M., Jones, R. Evaluation of trajectories and contact pressures for the straight nucleus cochlear implant electrode array - A two-dimensional application of finite element analysis. Med Eng Phys. 2003;25:141-7.
DOI: 10.1016/s1350-4533(02)00150-9
Google Scholar
[9]
Kha HN, Chen, B.K., Clark, G.M. 3D finite element analyses of insertion of the Nucleus standard straight and the Contour electrode arrays into the human cochlea. J Biomech. 2007;40:2796-805.
DOI: 10.1016/j.jbiomech.2007.01.013
Google Scholar
[10]
Lim YS, Park, S. I., Kim, Y. H., Oh, S. H., Kim, S. J. Three-dimensional analysis of electrode behavior in a human cochlear model. Med Eng Phys. 2005;27:695-703.
DOI: 10.1016/j.medengphy.2004.12.009
Google Scholar
[11]
Patrick JF, MacFarlane, J. C. Characterization of mechanical properties of single electrodes and multielectrodes. Clark and Bushby, editors, International Cochlear Implant Symposium. 1987:46-8.
Google Scholar
[12]
Shepherd RK, Clark, G. M., Pyman, B. C., Webb, R. L. Banded intracochlear electrode array: Evaluation of insertion trauma in human temporal bones. Ann Oto Rhinol Laryn. 1985;94:55-9.
DOI: 10.1177/000348948509400112
Google Scholar
[13]
Wade SA, Fallon JB, Wise AD, Shepherd RK, James N, Stoddart PR. Measurement of forces at the tip of a cochlear implant during insertion. IEEE T Bio-Med Eng. (2014).
DOI: 10.1109/tbme.2013.2296566
Google Scholar
[14]
Tykocinski M, Cohen LT, Pyman BC, Roland Jr T, Treaba C, Palamara J, et al. comparison of electrode position in the human cochlea using various perimodiolar electrode arrays. American Journal of Otology. 2000;21:205-11.
DOI: 10.1016/s0196-0709(00)80010-1
Google Scholar
[15]
Rebscher SJ, Hetherington, A., Bonham, B., Wardrop, P., Whinney, D., Leake, P. A. Considerations for design of future cochlear implant electrode arrays: Electrode array stiffness, size, and depth of insertion. J Rehabil Res Dev. 2008;45:731-48.
DOI: 10.1682/jrrd.2007.08.0119
Google Scholar
[16]
Franke-Trieger, A. and Mürbe, D., 2015. Estimation of insertion depth angle based on cochlea diameter and linear insertion depth: a prediction tool for the CI422. European Archives of Oto-Rhino-Laryngology, 272(11), pp.3193-3199.
DOI: 10.1007/s00405-014-3352-4
Google Scholar
[17]
Dieter, A., Keppeler, D. and Moser, T., 2020. Towards the optical cochlear implant: optogenetic approaches for hearing restoration. EMBO molecular medicine, 12(4), p.e11618.
DOI: 10.15252/emmm.201911618
Google Scholar
[18]
Glennon, E., Svirsky, M.A. and Froemke, R.C., 2020. Auditory cortical plasticity in cochlear implant users. Current Opinion in Neurobiology, 60, pp.108-114.
DOI: 10.1016/j.conb.2019.11.003
Google Scholar
[19]
Bierbaum, M., McMahon, C.M., Hughes, S., Boisvert, I., Lau, A.Y., Braithwaite, J. and Rapport, F., 2020. Barriers and facilitators to Cochlear implant uptake in Australia and the United Kingdom. Ear and Hearing, 41(2), pp.374-385.
DOI: 10.1097/aud.0000000000000762
Google Scholar
[20]
Canfarotta, M.W., Dillon, M.T., Buss, E., Pillsbury, H.C., Brown, K.D. and O'Connell, B.P., 2020. Frequency-to-place mismatch: characterizing variability and the influence on speech perception outcomes in cochlear implant recipients. Ear and hearing, 41(5), pp.1349-1361.
DOI: 10.1097/aud.0000000000000864
Google Scholar
[21]
Fletcher, M.D., Thini, N. and Perry, S.W., 2020. Enhanced pitch discrimination for cochlear implant users with a new haptic neuroprosthetic. Scientific Reports, 10(1), pp.1-10.
DOI: 10.1038/s41598-020-67140-0
Google Scholar
[22]
Shader, M.J., Nguyen, N., Cleary, M., Hertzano, R., Eisenman, D.J., Anderson, S., Gordon-Salant, S. and Goupell, M.J., 2020. Effect of Stimulation Rate on Speech Understanding in Older Cochlear-Implant Users. Ear and Hearing, 41(3), pp.640-651.
DOI: 10.1097/aud.0000000000000793
Google Scholar
[23]
Naples, J.G. and Ruckenstein, M.J., 2020. Cochlear Implant. Otolaryngologic Clinics of North America, 53(1), pp.87-102.
DOI: 10.1016/j.otc.2019.09.004
Google Scholar
[24]
Dieter, A., Keppeler, D. and Moser, T., 2020. Towards the optical cochlear implant: optogenetic approaches for hearing restoration. EMBO molecular medicine, 12(4), p.e11618.
DOI: 10.15252/emmm.201911618
Google Scholar
[25]
Lane, C., Zimmerman, K., Agrawal, S. and Parnes, L., 2020. Cochlear implant failures and reimplantation: A 30‐year analysis and literature review. The Laryngoscope, 130(3), pp.782-789.
DOI: 10.1002/lary.28071
Google Scholar