Porous Biphasic Calcium Phosphate for Biomedical Application

Article Preview

Abstract:

Excellent osteoconductivity and resorbability achieved when porous bioceramics have highsurface area that providing fast bone ingrowth. Porous samples were fabricated by using biphasic calcium phosphate BCP (achieved from HA heat treated at 850 oC) with 10 and 20 wt% of ovalbumin binder powder and mixture of carrot fibers and ovalbumin powders (1:1) then dried at 60oC and fired at 1300 oC. Structural, physical and mechanical properties of the prepared porous bioceramic were determined involved X-ray diffraction, Fourier transform infrared spectroscopy FTIR, apparent porosity, water absorption, apparent solid density and compressive strength. The results of X-ray and FTIR showed that the heat treatment of HA was succeeded in forming biphasic calcium phosphate. The apparent porosity values increased with increasing of the binder and carrot fibers content and the growths density of bacteria on bioceramics are less than natural bone. The effect of pathogenic bacteria (Pseudomonas & Staphylococcus) that cause pollution on porous calcium phosphate and natural bone (Albino mice) has been studied.

You might also be interested in these eBooks

Info:

Pages:

101-110

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. L. Frode, S. Lee, The use of high-density polyethylene implants in facial deformities, Arch Otolaryngol Head Neck Surg. 124 (1998)1219-1223.

DOI: 10.1001/archotol.124.11.1219

Google Scholar

[2] N. M. Whear, R. R. Cousley, C. Liew, D. Henderson, Post-operative infection of Proplast facial implants, Br. J. Oral Maxillofac. Surg. 31 (1993) 292-295.

DOI: 10.1016/0266-4356(93)90062-2

Google Scholar

[3] S.M. Best, A.E. Porter, E.S. Thian, J. Huang, Bioceramics: Past, present and for the future, Journal of the European Ceramic Society. 28 (2008) 1319-1327.

DOI: 10.1016/j.jeurceramsoc.2007.12.001

Google Scholar

[4] D. L. Hoexter, Bone regeneration graft materials, J. Oral Implantol. 28 (2002) 290-294.

Google Scholar

[5] D. W. Hutmacher, Scaffold in Tissue Engineering Bone and cartilage, Biomaterials, 21 (2000) 2529-2543.

DOI: 10.1016/s0142-9612(00)00121-6

Google Scholar

[6] V. Campana, G. Milano, E. Pagano, M. Barba, C. Cicione, G. Salonna, W. Lattanzi, G. Logroscino, Bone substitutes in orthopaedic surgery: from basic science to clinical practice, J Mater Sci Mater Med. 25 (2014) 2445–2461.

DOI: 10.1007/s10856-014-5240-2

Google Scholar

[7] S. K. Nandi, B. Kundu, S. K. Ghosh, D. K. De, D. Basu, Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat, J Vet Sci. 9 (2008) 183–191.

DOI: 10.4142/jvs.2008.9.2.183

Google Scholar

[8] J. M. Spivak, A. Hasharoni, Use of hydroxyapatite in spine surgery, Eur Spine J. 10 (2001) S197–S204.

DOI: 10.1007/s005860100286

Google Scholar

[9] T. Koshino, T. Murase, T. Takagi, T. Saito, New bone formation around porous hydroxyapatite wedge implanted in opening wedge high tibial osteotomy in patients with osteoarthritis, Biomaterials. 22 (2001) 1579–1582.

DOI: 10.1016/s0142-9612(00)00318-5

Google Scholar

[10] M. Chazono, T. Tanaka, H. Komaki, K. Fujii, Bone formation and bioresorption after implantation of injectable beta-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects, J. Biomed. Mater. Res. A 70 (2004) 542–549.

DOI: 10.1002/jbm.a.30094

Google Scholar

[11] J. M. Wozney, V. Rosen, Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair, Clin. Orthop. 346 (1998) 26-37.

DOI: 10.1097/00003086-199801000-00006

Google Scholar

[12] K. S. Lee, J. S. Chang, J. H. Kim, et al., The role of osteoclast in resorption of hydroxyapatite and β-tricalcium phosphate coating layer, Key Eng. Mater. 396–398 (2009) 81–84.

DOI: 10.4028/www.scientific.net/kem.396-398.81

Google Scholar

[13] L. Galois, D. Mainard, Bone ingrowth into two porous ceramics with different pore sizes: an experimental study, Acta. Orthop. Belg. 70 (2004) 598–603.

Google Scholar

[14] S. Cavalu, G. Damian, M. Dansoreanu, EPR study of non-covalent spin labeled serum albumin and hemoglobin, Biophysical Chemistry 99 (2002) 181–188.

DOI: 10.1016/s0301-4622(02)00182-5

Google Scholar

[15] S. CõÃntaÄ-PõÃnzaru, S. Cavalu, N. Leopold, Petry R.and Kiefer W. Raman and surface-enhanced Raman spectroscopy of tempyo spin labelled ovalbumin, Journal of Molecular Structure 565-566 (2001) 225-229.

DOI: 10.1016/s0022-2860(00)00930-3

Google Scholar

[16] L. Yin, H. X. Peng, S. Dhara, L. Yang, B. Su, Natural additives in protein coagulation c asting process for improved microstructural controllability of cellular ceramics, Composites: Part B. 40 (2009) 638–644.

DOI: 10.1016/j.compositesb.2009.04.016

Google Scholar

[17] W. A. Hussain, S. N. Rafiq, Mechanical properties of carrot fiber- epoxy composite, J. Baghdad Sci. 9 (2012) 335-340.

Google Scholar

[18] T. Theophile, Infrared Spectroscopy: Materials Science, Engineering and Technology, InTech, Janeza Trdine 9, 51000 Rijeka, Croatia, (2012).

Google Scholar

[19] I. Sopyana,, M. Melb, S. Rameshc, K. A. Khalid, Porous hydroxyapatite for artificial bone applications, Science and Technology of Advanced Materials 8 (2007) 116–123.

Google Scholar

[20] A. R. Fariza, A. Zuraida, I. Sopyan, Egg Yolk as Pore Creating Agent to Produce Porous Tri-Calcium Phosphate for Bone Implant Application, Adv. Mater. Research 264-265 (2011) 760-764.

DOI: 10.4028/www.scientific.net/amr.264-265.760

Google Scholar

[21] T. Tosiriwatanapong, W. Singhatanadgit, Zirconia-Based Biomaterials for Hard Tissue Reconstruction, Bone and Tissue Regeneration 9 (2018) 1–9.

DOI: 10.1177/1179061x18767886

Google Scholar

[22] E. Gregorová, Z. Živcová, W. Pabst, A. Kunertová, Starch-Processed Ceramics with Porosity or Pore Size Gradients, J. Eur. Ceram. Soc. 29 (2009) 347–353.

Google Scholar

[23] V. Jokanović, B. Čolović, D. Marković, S. Živković, Bioactive Glasses in Bone Tissue Engineering, Serbian Dental Journal 62 (2015) 71-79.

DOI: 10.1515/sdj-2015-0008

Google Scholar

[24] V. Eldere, Multicentre surveillance of Pseudomonas aeruginosa susceptibility patterns in nosocomial infections, J. Antimicrobial Chemotherapy 51 (2003) 347–352.

DOI: 10.1093/jac/dkg102

Google Scholar

[25] M. J. Buehler, Y. C. Yung, Deformation and failure of protein materials in extreme conditions and disease, Nature Materials 8 (2009) 175-188.

DOI: 10.1038/nmat2387

Google Scholar

[26] K. Yamane, Y. Doi, K. Yokoyama, T. Yagi, H. Kurokawa, N. Shibata, K. Shibayama, H. Kato, Y. Arakawa, Genetic environments of the rmtA gene in Pseudomonas aeruginosa clinical isolates, Antimicrobial Agents and Chemother. 48 (2004) 2069–(2074).

DOI: 10.1128/aac.48.6.2069-2074.2004

Google Scholar

[27] S. K. Mazmanian, H. Ton-That, O. Schneewind, Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcu saureus, Molecular Microbiology 40 (2001) 1049-1057.

DOI: 10.1046/j.1365-2958.2001.02411.x

Google Scholar

[28] J. P. Euzéby, List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet, Int. J. Systematic Bacteriology 47 (1997) 590-592.

DOI: 10.1099/00207713-47-2-590

Google Scholar

[29] W. A. Hussain, E. M. Hadi, M. M. Ismail, L. H. Alwan, Preparation of Household Water Filter. Journal of applied science and engineering 23 (2020) 61-68.

Google Scholar

[30] G. Lopéz-Lopéz, A. Pascual, E. J. Perea, Effect of plastic catheter material on bacterial adherence and viability, J. Med. Microbiol. 34 (1991) 349-353.

DOI: 10.1099/00222615-34-6-349

Google Scholar

[31] K. Tegmark, A. Karlsson, S. Arvidson, Identification and characterization of SarH1, a new global regulator of virulence gene expression in Staphylococcus aureus,  Molecular microbiology 37 (2000) 398-409.

DOI: 10.1046/j.1365-2958.2000.02003.x

Google Scholar

[32] H. D. Espinosa, J. E. Rim, F. Barthelat, M. J. Buehler, Merger of Structure and Material in Nacre and Bone - Perspectives on de novo Biomimetic Materials, Pro. Mater. Sci. 54 (2009) 1059–1100.

DOI: 10.1016/j.pmatsci.2009.05.001

Google Scholar

[33] W. R. Walsh, R. A. Oliver, C. Christou, V. Lovric, E. R. Walsh, G. R. Prado, et al., Critical Size Bone Defect Healing Using Collagen–Calcium Phosphate Bone Graft Materials, PLoS ONE. 12 (2017) e0168883.

DOI: 10.1371/journal.pone.0168883

Google Scholar

[34] T. A. Surovell, M. C. Stiner, Standardizing Infra-red Measures of Bone Mineral Crystallinity: an Experimental Approach, J. Archaeological Sci. 28 (2001) 633–642.

DOI: 10.1006/jasc.2000.0633

Google Scholar