Classification of Pulmonary Crackle and Normal Lung Sound Using Spectrogram and Support Vector Machine

Article Preview

Abstract:

Crackles is one of the types of adventitious lung sound heard in patients with interstitial pulmonary fibrosis or cystic fibrosis. Pulmonary crackles of discontinuous short duration appear on inspiration, expiration, or both. To differentiate these pulmonary crackles, the medical staff usually uses a manual method, called auscultation. Various methods were developed to recognize pulmonary crackles and distinguish them from normal pulmonary sounds to be applied in digital signal processing technology. This paper demonstrates a feature extraction method to classify pulmonary crackle and normal lung sounds using Support Vector Machine (SVM) method using several kernels by performing spectrograms of the pulmonary sound to generate the frequency profile. Spectrograms with various resolutions and 3-fold cross-validation were used to divide the training data and the test data in the testing process. The resulting accuracy ranges from 81.4% - 100%. More accuracy values of 100% are generated by a feature extraction in several SVM kernels using 256 points FFT with three variations of windowing parameters compared to 512 points, where the best accuracy of 100% was produced by STFT-SVM method. This method has a potential to be used in the classification of other biomedical signals. The advantages of that are that the number of features produced is the same as the N-point FFT used for any signal length, the flexibility in the STFT parameters changes, such as the type of window and the window's length. In this study, only the Keiser window was tested with specific parameters. Exploration with different window types with various parameters is fascinating to do in further research.

You might also be interested in these eBooks

Info:

Pages:

143-153

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Reichert, R. Gass, C. Brandt, and E. Andrès. Clin. Med. Circ. Respirat. Pulm. Med Vol. 2008-2 (2008) p.45.

Google Scholar

[2] M. S. Swapna, A. Renjini, V. Raj, S. Sreejyothi, and S. Sankararaman. Phys. Eng. Sci. Med. Vol 43-4 (2020) p.1339.

DOI: 10.1007/s13246-020-00937-5

Google Scholar

[3] N. A. Malik, W. Idris, T. S. Gunawan, R. F. Olanrewaju, and S. N. Ibrahim. Int. J. Electr. Comput. Eng. Vol. 8-3 (2018), p.1530.

Google Scholar

[4] S. M. Shaharum and K. Sundaraj. Appl. Mech. Mater., vol. 591, p.163–166, Jul. (2014).

Google Scholar

[5] C. Chen, W. Huang, T. Tan, C.-C. Chang, and Y. Chang. Sensors Vol. 15-6 (2015) p.13132.

Google Scholar

[6] A. Kandaswamy, C. S. Kumar, R. P. Ramanathan, S. Jayaraman, and N. Malmurugan. Comput. Biol. Med. Vol. 34-6 (2004) p.523.

Google Scholar

[7] A. Hashemi, H. Arabalibiek, and K. Agin. International Conference on Biomedical Engineering and Technology (2011) Vol. 11 (2011), p.127.

Google Scholar

[8] S. Abbasi, R. Derakhshanfar, A. Abbasi, and Y. Sarbaz. 2013 21st Iranian Conference on Electrical Engineering (ICEE) (2013), p.1.

DOI: 10.1109/iraniancee.2013.6599555

Google Scholar

[9] A. Monaco, N. Amoroso, L. Bellantuono, E. Pantaleo, S. Tangaro, and R. Bellotti. Appl. Sci. Vol. 10-23 (2020), p.8606.

DOI: 10.3390/app10238606

Google Scholar

[10] A. Rizal, R. Hidayat, and H. A. Nugroho. Proceedings of 2016 1st International Conference on Biomedical Engineering: Empowering Biomedical Technology for Better Future, IBIOMED 2016, (2017).

DOI: 10.1109/ibiomed.2016.7869823

Google Scholar

[11] S. Charleston-Villalobos, L. Albuerne-Sanchez, R. Gonzalez-Camarena, M. Mejia-Avila, G. Carrillo-Rodriguez, and T. Aljama-Corrales. Methods Inf. Med. Vol. 52-3 (2013) p.266.

DOI: 10.3414/me12-01-0037

Google Scholar

[12] S. İçer and Ş. Gengeç. Digit. Signal Process. Vol. 28 (2014) p.18.

Google Scholar

[13] M. Y. Chen and C. C. Huang. Appl. Mech. Mater., Vol (2012).

Google Scholar

[14] F. Jin, S. S. Krishnan, and F. Sattar, Adventitious Sounds Identification and Extraction Using Temporal – Spectral Dominance-Based Features,, IEEE Trans. Biomed. Eng., vol. 58, no. 11, p.3078–3087, (2011).

DOI: 10.1109/tbme.2011.2160721

Google Scholar

[15] G. Manhertz and A. Bereczky. Mech. Syst. Signal Process. Vol. 154 (2021), p.107583.

Google Scholar

[16] B. A. Pramudita, Istiqomah, and A. Rizal. AIP Conference Proceedings. Vol. 2296 (2020) p.020014.

Google Scholar

[17] M. Lozano, J. A. Fiz, and R. Jané. Signal Processing. Vol. 120 (2016).

Google Scholar

[18] A. Gurung, C. G. Scrafford, J. M. Tielsch, O. S. Levine, and W. Checkley. Respir. Med. Vol. 105-9 (2011) p.1396.

Google Scholar

[19] A. Rizal, R. Hidayat, and H. A. Nugroho. Int. J. Adv. Intell. Informatics. Vol. 4- 3 (2018), p.192.

Google Scholar

[20] M. Akay, Nonlinear biomedical signal processing. (IEEE Press, New Jersey 2001).

Google Scholar

[21] L. H. Wang, Q. D. Zhang, Y. H. Zhang, and K. Zhang. Adv. Mater. Res., vol. 214, p.122–127, Feb. (2011).

Google Scholar

[22] C. Cortes and V. Vapnik. Mach. Learn. Vol. 20-3 (1995), p.273.

Google Scholar

[23] Y. H. Shao, Y. S. Zhou, Y. Zhang, Y. D. Gu, G. Fekete, and J. Fernandez. J. Biomimetics, Biomater. Biomed. Eng., Vol. 29 (2016), p.61.

Google Scholar

[24] C. J. C. Burges. Data Min. Knowl. Discov. Vol. 2-2 (1998), p.121.

Google Scholar

[25] M. Kumar, R. B. Pachori, and U. R. Acharya. Biomed. Signal Process. Control, Vol. 31 (2017), p.301.

Google Scholar

[26] U. R. Acharya, S. V Sree, A. P. Alvin, R. Yanti, and J. S. Suri. Int. J. Neural Syst. Vol. 22-2 (2012), p.1250002.

Google Scholar

[27] V. Gupta, T. Priya, A. K. Yadav, R. B. Pachori, and U. Rajendra Acharya. Pattern Recognit. Lett. Vol. 94 (2017), p.180.

Google Scholar

[28] S. Yadav and S. Shukla, 2016 IEEE 6th International Conference on Advanced Computing (IACC), (2016), p.78.

Google Scholar

[29] L. J. Hadjileontiadis, Lung Sounds: An Advanced Signal Processing Perspective, (Morgan & Claypool Publisher, California 2008).

Google Scholar

[30] M. Fernandez-Granero, D. Sanchez-Morillo, and A. Leon-Jimenez. Sensors, Vol. 15-10 (2015), p.26978.

DOI: 10.3390/s151026978

Google Scholar