Using Pectoral Muscle Removers in Mammographic Image Process to Improve Accuracy in Breast Cancer

Article Preview

Abstract:

Cancer is a disease that attacks almost any organ or tissue of the body when abnormal cells grow uncontrollably and invade adjacent parts of the body. The second highest incidence of cancer in Indonesia is breast cancer with 42.1 cases per 100,000 population with an average mortality rate of 17 per 100,000 population. Mammography is a special imaging modality with x-rays to produce detailed breast images with at least 2 viewpoints, namely Craniocaudal (CC) or top view and Medio Lateral Oblique (MLO) or side view. The chest muscle area on the MLO display often interferes with the cancer identification process on mammography images because it has a dominant density and is similar to the density of cancer tissue. This research proposes a framework consisting of pectoral muscle detection on MLO display, image enhancement process, segmentation, and feature extraction. This study succeeded in increasing the accuracy of the MLO display mammography image after using the pectoral muscle remover using gradual edge detection and Hough lines Transform with the ratios of accuracy, precision, specificity, and sensitivity for images without pectoral muscle removers respectively were 33.59%, 30%, 11.49% and 80.48%. As for the images with pectoral muscle removers, the accuracy, precision, specificity, and sensitivity values respectively ​​were 68.67%, 64.71%, 57.14%, and 80.49%. For future projects, this research can be developed using Convolutional Neural Network (CNN) to improve accuracy. This is expected to help doctors and radiologists in the process of reading patient mammography so it can reduce mortality from breast cancer.

You might also be interested in these eBooks

Info:

Pages:

131-142

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ministry of Health RI., Infodatin-cancer burden 2019, Jakarta Minist. Heal. RI. (2019).

Google Scholar

[2] WHO, Cancer, WHO. (n.d.). https://www.who.int/health-topics/cancer#tab=tab_1 (accessed November 12, 2020).

Google Scholar

[3] Kemenkes RI, Kementerian Kesehatan Republik Indonesia, (n.d.). https://www.kemkes.go.id/article/view/19020100003/hari-kanker-sedunia-2019.html (accessed November 12, 2020).

Google Scholar

[4] Rumah Sakit Klinis Onkologi Queen, Cancer-Breast-Cancer-Indonesian, Cancer Breast Cancer Indones. 38 (2017) 1–9.

Google Scholar

[5] A.B.R. Arafah, H.B. Notobroto, Faktor Yang Berhubungan Dengan Perilaku Ibu Rumah Tangga Melakukan Pemeriksaan Payudara Sendiri (Sadari), Indones. J. Public Heal. 12 (2018) 143.

DOI: 10.20473/ijph.v12i2.2017.143-153

Google Scholar

[6] D.A. Ramadhania, Pemeriksaan Radiologi untuk Deteksi Kanker Payudara, Cermin Dunia Kedokt. 44 (2017) 226–229.

Google Scholar

[7] A.S.A. Bin Sama, S.M.S. Baneamoon, Breast Cancer Classification Enhancement Based on Entropy Method, Int. J. Eng. Appl. Comput. Sci. 02 (2017) 267–271.

DOI: 10.24032/ijeacs/0208/06

Google Scholar

[8] M.M. Tariq, S. Khubaib, A.B. Imran, M. Ibrahim, Screening mammography for breast cancer in women using Bi-RADS scores, Iran. J. Cancer Prev. 4 (2011) 20–25.

Google Scholar

[9] A. Majdawati, Kasus Carcinoma.pdf, Mutiara Med. 8 (2008) 129–136.

Google Scholar

[10] R.J. Ferrari, R.M. Rangayyan, J.E.L. Desautels, R.A. Borges, A.F. Frère, Automatic Identification of the Pectoral Muscle in Mammograms, IEEE Trans. Med. Imaging. 23 (2004) 232–245.

DOI: 10.1109/tmi.2003.823062

Google Scholar

[11] S.A. Taghanaki, Y. Liu, B. Miles, G. Hamarneh, Geometry-Based Pectoral Muscle Segmentation from MLO Mammogram Views, IEEE Trans. Biomed. Eng. 64 (2017) 2662–2671.

DOI: 10.1109/tbme.2017.2649481

Google Scholar

[12] I. Santoso, U. Diponegoro, I. Santoso, Identifikasi Keberadaan Kanker Pada Citra Mammografi Menggunakan Metode Wavelet Haar, Transmisi. 11 (2009) 100-106–106.

Google Scholar

[13] P. Shi, J. Zhong, A. Rampun, H. Wang, A hierarchical pipeline for breast boundary segmentation and calcification detection in mammograms, Comput. Biol. Med. 96 (2018) 178–188.

DOI: 10.1016/j.compbiomed.2018.03.011

Google Scholar

[14] A.R. Beeravolu, S. Azam, M. Jonkman, B. Shanmugam, K. Kannoorpatti, A. Anwar, Preprocessing of Breast Cancer Images to Create Datasets for Deep-CNN, IEEE Access. 9 (2021) 33438–33463.

DOI: 10.1109/access.2021.3058773

Google Scholar

[15] R.S. Lee, F. Gimenez, A. Hoogi, K.K. Miyake, M. Gorovoy, D.L. Rubin, Data Descriptor: A curated mammography data set for use in computer-aided detection and diagnosis research, Sci. Data. 4 (2017) 1–9.

DOI: 10.1038/sdata.2017.177

Google Scholar

[16] A. Qayyum, A. Basit, Automatic breast segmentation and cancer detection via SVM in mammograms, ICET 2016 - 2016 Int. Conf. Emerg. Technol. (2017).

DOI: 10.1109/icet.2016.7813261

Google Scholar

[17] L. Shapiro, G. Stockman, Computer Vision, (2000).

Google Scholar

[18] E.F. Manurung, Implementasi Metode Median Filter Dan Histogram Equalization Untuk Perbaikan Citra Digital, J. Pelita Inform. 16 (2017) 270–274. https://adoc.pub/implementasi-metode-median-filter-dan-histogram-equalization.html.

DOI: 10.31949/infotech.v8i1.1878

Google Scholar

[19] D. Liu, J. Yu, Otsu method and K-means, Proc. - 2009 9th Int. Conf. Hybrid Intell. Syst. HIS 2009. 1 (2009) 344–349.

Google Scholar

[20] R. Srisha, A. Khan, Morphological Operations for Image Processing : Understanding and its Applications, NCVSComs-13. (2013) 17–19.

Google Scholar

[21] Arthur Coste, Image Processing : Hough Transform CS6640: Image Processing Project 4 Hough Transform, (2012).

Google Scholar

[22] Z.A. Matondang, Penerapan Metode Contrast Limited Adaptive Histogram Equalization (Clahe) Pada Citra Digital Untuk Memperbaiki Gambar X-ray, Publ. Ilm. Teknol. Inf. Neumann. 3 (2018) 24–29. https://www.neliti.com/id/publications/283772/penerapan-metode-contrast-limited-adaptive-histogram-equalization-clahe-pada-cit#cite.

DOI: 10.37034/jidt.v4i1.184

Google Scholar

[23] Nurliadi, P. Sihombing, M. Ramli, Analisis Contrast Stretching Menggunakan Algoritma Euclidean untuk Meningkatkan Kontras pada Citra Berwarna, J. Teknovasi J. Tek. Dan Inov. 03 (2016) 26–38.

Google Scholar

[24] A.B.W. P, Rihartanto, E. Subkhiana, Ekstraksi Ciri Entropy Untuk Pengenalan Pola Wajah Menggunakan Fuzzy Rule Base, J. SMARTICS. 2 (2016) 35–42.

Google Scholar

[25] W. Mertiana, T. Sardjono, N. Hikmah, Peningkatan Kontras Citra Mamografi Digital Dengan Menggunakan Clahe dan Contrast Stretching, J. Tek. ITS. 9 (2020) 222–227.

DOI: 10.12962/j23373539.v9i2.56306

Google Scholar

[26] H.Y. Susetya, A. Rachmat, K.A. Nugraha, IMPLEMENTASI MOMENT INVARIANT UNTUK PENGENALAN LABEL BUKU PERPUSTAKAAN BERBASIS ANDROID, J. Terap. Teknol. Inf. 1 (2017).

DOI: 10.21460/jutei.2017.11.13

Google Scholar

[27] M. Heath, K. Bowyer, D. Kopans, R. Moore, P.K. Jr., The Digital Database for Screening Mammography, (2020) 274–282.

Google Scholar