[1]
Roffwarg, H.P., J.N. Muzio, and W.C. Dement, Ontogenetic development of the human sleep-dream cycle. Science, (1966).
Google Scholar
[2]
Eaton, D.K., et al., Prevalence of insufficient, borderline, and optimal hours of sleep among high school students–United States, 2007. Journal of Adolescent Health, 2010. 46(4): pp.399-401.
DOI: 10.1016/j.jadohealth.2009.10.011
Google Scholar
[3]
Benington, J.H. and H.C. Heller, Restoration of brain energy metabolism as the function of sleep. Progress in neurobiology, 1995. 45(4): pp.347-360.
DOI: 10.1016/0301-0082(94)00057-o
Google Scholar
[4]
Alhassani, A.A. and M.S. Al-Zahrani, Is inadequate sleep a potential risk factor for periodontitis? PLoS One, 2020. 15(6): p. e0234487.
DOI: 10.1371/journal.pone.0234487
Google Scholar
[5]
Redline, S., et al., The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture. Archives of internal medicine, 2004. 164(4): pp.406-418.
DOI: 10.1001/archinte.164.4.406
Google Scholar
[6]
Wisana, I., P.C. Nugraha, and D. Estiwidani. The Effectiveness Obstructive Sleep Apnea Monitoring Using Telemedicine Smartphone System (TmSS). in Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2021. Trans Tech Publ.
DOI: 10.4028/www.scientific.net/jbbbe.50.113
Google Scholar
[7]
da Silva, A.A., et al., Sleep duration and mortality in the elderly: a systematic review with meta-analysis. BMJ open, 2016. 6(2): p. e008119.
Google Scholar
[8]
Vitiello, M.V., Sleep disorders and aging: understanding the causes. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 1997. 52(4): p. M189-M191.
DOI: 10.1093/gerona/52a.4.m189
Google Scholar
[9]
Sharma, R., R.B. Pachori, and A. Upadhyay, Automatic sleep stages classification based on iterative filtering of electroencephalogram signals. Neural Computing and Applications, 2017. 28(10): pp.2959-2978.
DOI: 10.1007/s00521-017-2919-6
Google Scholar
[10]
Berry, R., et al., Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. J Clin Sleep Med, 2012. 8(5): pp.597-619.
DOI: 10.5664/jcsm.2172
Google Scholar
[11]
Rosenberg, R.S. and S. Van Hout, The American Academy of Sleep Medicine inter-scorer reliability program: Respiratory events. Journal of clinical sleep medicine, 2014. 10(4): pp.447-454.
DOI: 10.5664/jcsm.3630
Google Scholar
[12]
Wolpert, E.A., A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Archives of General Psychiatry, 1969. 20(2): pp.246-247.
DOI: 10.1001/archpsyc.1969.01740140118016
Google Scholar
[13]
Biswal, S., et al., SLEEPNET: automated sleep staging system via deep learning. arXiv preprint arXiv:1707.08262, (2017).
Google Scholar
[14]
Redmond, S.J. and C. Heneghan, Cardiorespiratory-based sleep staging in subjects with obstructive sleep apnea. IEEE Transactions on Biomedical Engineering, 2006. 53(3): pp.485-496.
DOI: 10.1109/tbme.2005.869773
Google Scholar
[15]
Krakovská, A. and K. Mezeiová, Automatic sleep scoring: A search for an optimal combination of measures. Artificial intelligence in medicine, 2011. 53(1): pp.25-33.
DOI: 10.1016/j.artmed.2011.06.004
Google Scholar
[16]
Andreotti, F., H. Phan, and M. De Vos. Visualising convolutional neural network decisions in automatic sleep scoring. in CEUR Workshop Proceedings. 2018. CEUR Workshop Proceedings.
Google Scholar
[17]
Lajnef, T., et al., Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines. Journal of neuroscience methods, 2015. 250: pp.94-105.
DOI: 10.1016/j.jneumeth.2015.01.022
Google Scholar
[18]
Huang, W., et al., Sleep staging algorithm based on multichannel data adding and multifeature screening. Computer methods and programs in biomedicine, 2020. 187: p.105253.
DOI: 10.1016/j.cmpb.2019.105253
Google Scholar
[19]
Sors, A., et al., A convolutional neural network for sleep stage scoring from raw single-channel EEG. Biomedical Signal Processing and Control, 2018. 42: pp.107-114.
DOI: 10.1016/j.bspc.2017.12.001
Google Scholar
[20]
Supratak, A., et al., DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017. 25(11): pp.1998-2008.
DOI: 10.1109/tnsre.2017.2721116
Google Scholar
[21]
Wang, Y., et al., Evaluation of an automated single-channel sleep staging algorithm. Nature and science of sleep, 2015. 7: p.101.
Google Scholar
[22]
Tsinalis, O., et al., Automatic sleep stage scoring with single-channel EEG using convolutional neural networks. arXiv preprint arXiv:1610.01683, (2016).
Google Scholar
[23]
Kıymık, M.K., et al., Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Computers in biology and medicine, 2005. 35(7): pp.603-616.
DOI: 10.1016/j.compbiomed.2004.05.001
Google Scholar
[24]
Radha, M., et al. Comparison of feature and classifier algorithms for online automatic sleep staging based on a single EEG signal. in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2014. IEEE.
DOI: 10.1109/embc.2014.6943976
Google Scholar
[25]
Li, Y., et al. Sleep stage classification based on EEG Hilbert-Huang transform. in 2009 4th IEEE Conference on Industrial Electronics and Applications. 2009. IEEE.
DOI: 10.1109/iciea.2009.5138842
Google Scholar
[26]
Liu, Y., et al. Automatic sleep stage scoring using Hilbert-Huang transform with BP neural network. in 2010 4th International Conference on Bioinformatics and Biomedical Engineering. 2010. IEEE.
DOI: 10.1109/icbbe.2010.5516372
Google Scholar
[27]
Guo, C., et al. Sleep EEG staging based on Hilbert-Huang transform and sample Entropy. in 2015 International Conference on Computational Intelligence and Communication Networks (CICN). 2015. IEEE.
DOI: 10.1109/cicn.2015.92
Google Scholar
[28]
Hassan, A.R. and M.I.H. Bhuiyan, A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features. Journal of neuroscience methods, 2016. 271: pp.107-118.
DOI: 10.1016/j.jneumeth.2016.07.012
Google Scholar
[29]
Khalighi, S., et al. Efficient feature selection for sleep staging based on maximal overlap discrete wavelet transform and SVM. in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2011. IEEE.
DOI: 10.1109/iembs.2011.6090897
Google Scholar
[30]
Chriskos, P., et al. Automatic sleep stage classification applying machine learning algorithms on EEG recordings. in 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). 2017. IEEE.
DOI: 10.1109/cbms.2017.83
Google Scholar
[31]
Liao, Y., et al. Tri-FeatureNet: An Adversarial Learning-Based Invariant Feature Extraction for Sleep Staging using Single-Channel EEG. in 2020 IEEE International Symposium on Circuits and Systems (ISCAS). 2020. IEEE.
DOI: 10.1109/iscas45731.2020.9180501
Google Scholar
[32]
Tabar, Y.R., et al., Investigation of Low Dimensional Feature Spaces for Automatic Sleep Staging. Computer Methods and Programs in Biomedicine, 2021: p.106091.
DOI: 10.1016/j.cmpb.2021.106091
Google Scholar
[33]
Triwiyanto, T., et al. Electromyography Feature Analysis to Recognize the Hand Motion in a Prosthetic Hand Design. in Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2021. Trans Tech Publ.
DOI: 10.4028/www.scientific.net/jbbbe.50.25
Google Scholar
[34]
Phan, H., et al., XSleepNet: Multi-view sequential model for automatic sleep staging. IEEE Transactions on Pattern Analysis and Machine Intelligence, (2021).
DOI: 10.1109/tpami.2021.3070057
Google Scholar
[35]
Nasiri, S. and G.D. Clifford. Attentive Adversarial Network for Large-Scale Sleep Staging. in Machine Learning for Healthcare Conference. 2020. PMLR.
Google Scholar
[36]
Phan, H., et al., Joint classification and prediction CNN framework for automatic sleep stage classification. IEEE Transactions on Biomedical Engineering, 2018. 66(5): pp.1285-1296.
DOI: 10.1109/tbme.2018.2872652
Google Scholar
[37]
Mikkelsen, K. and M. De Vos, Personalizing deep learning models for automatic sleep staging. arXiv preprint arXiv:1801.02645, (2018).
Google Scholar
[38]
Chambon, S., et al., A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018. 26(4): pp.758-769.
DOI: 10.1109/tnsre.2018.2813138
Google Scholar
[39]
Jayathilake, A., A. Perera, and M. Chamikara, Discrete Walsh-Hadamard transform in signal processing. IJRIT Int. J. Res. Inf. Technol, 2013. 1: pp.80-89.
Google Scholar
[40]
Ahmed, N., T. Natarajan, and K.R. Rao, Discrete cosine transform. IEEE transactions on Computers, 1974. 100(1): pp.90-93.
DOI: 10.1109/t-c.1974.223784
Google Scholar
[41]
Goldberger, A.L., et al., PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. circulation, 2000. 101(23): p. e215-e220.
DOI: 10.1161/01.cir.101.23.e215
Google Scholar
[42]
Boostani, R., F. Karimzadeh, and M. Nami, A comparative review on sleep stage classification methods in patients and healthy individuals. Computer methods and programs in biomedicine, 2017. 140: pp.77-91.
DOI: 10.1016/j.cmpb.2016.12.004
Google Scholar
[43]
Kales, A. and A. Rechtschaffen, A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. 1968: US Department of Health, Education and Welfare, Public Health Service ….
Google Scholar
[44]
Fu, M., et al., Deep Learning in Automatic Sleep Staging With a Single Channel Electroencephalography. Frontiers in Physiology, 2021. 12(179).
Google Scholar
[45]
Phan, H., et al. Automatic sleep stage classification using single-channel eeg: Learning sequential features with attention-based recurrent neural networks. in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018. IEEE.
DOI: 10.1109/embc.2018.8512480
Google Scholar
[46]
Shenoi, B.A., Introduction to digital signal: Processing and filter design. 2006: Wiley Online Library.
Google Scholar
[47]
Qu, N., et al., Fault detection on insulated overhead conductors based on DWT-LSTM and partial discharge. IEEE Access, 2020. 8: pp.87060-87070.
DOI: 10.1109/access.2020.2992790
Google Scholar
[48]
Mallat, S.G., A theory for multiresolution signal decomposition: the wavelet representation. IEEE transactions on pattern analysis and machine intelligence, 1989. 11(7): pp.674-693.
DOI: 10.1109/34.192463
Google Scholar
[49]
Salomon, D., Data compression: the complete reference. 2004: Springer Science & Business Media.
Google Scholar
[50]
Birvinskas, D., et al. EEG dataset reduction and feature extraction using discrete cosine transform. in 2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation. 2012. IEEE.
DOI: 10.1109/ems.2012.88
Google Scholar
[51]
Huang, N.E., et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 1998. 454(1971): pp.903-995.
DOI: 10.1098/rspa.1998.0193
Google Scholar
[52]
Peng, Z., W.T. Peter, and F. Chu, An improved Hilbert–Huang transform and its application in vibration signal analysis. Journal of sound and vibration, 2005. 286(1-2): pp.187-205.
DOI: 10.1016/j.jsv.2004.10.005
Google Scholar
[53]
Kizhner, S., et al. On the Hilbert-Huang transform data processing system development. in 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720). 2004. IEEE.
DOI: 10.1109/aero.2004.1367979
Google Scholar
[54]
Labate, D., et al., Empirical mode decomposition vs. wavelet decomposition for the extraction of respiratory signal from single-channel ECG: A comparison. IEEE Sensors Journal, 2013. 13(7): pp.2666-2674.
DOI: 10.1109/jsen.2013.2257742
Google Scholar
[55]
Rilling, G., P. Flandrin, and P. Goncalves. On empirical mode decomposition and its algorithms. in IEEE-EURASIP workshop on nonlinear signal and image processing. 2003. Citeseer.
Google Scholar
[56]
Cho, S.-H., G. Jang, and S.-H. Kwon, Time-frequency analysis of power-quality disturbances via the Gabor–Wigner transform. IEEE transactions on power delivery, 2009. 25(1): pp.494-499.
DOI: 10.1109/tpwrd.2009.2034832
Google Scholar
[57]
Qian, S. and D. Chen, Discrete gabor transform. IEEE transactions on signal processing, 1993. 41(7): pp.2429-2438.
DOI: 10.1109/78.224251
Google Scholar
[58]
Saraiva, A.A., et al., Electroencephalography applied compression algorithms qualitative analysis. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 2020. 8(4): pp.367-373.
DOI: 10.1080/21681163.2019.1673212
Google Scholar
[59]
Hlawatsch, F. and G.F. Boudreaux-Bartels, Linear and quadratic time-frequency signal representations. IEEE signal processing magazine, 1992. 9(2): pp.21-67.
DOI: 10.1109/79.127284
Google Scholar
[60]
Taşpinar, G., et al. Investigation of photic stimulation response with time-frequency based parameters. in 2010 15th National Biomedical Engineering Meeting. 2010. IEEE.
DOI: 10.1109/biyomut.2010.5479845
Google Scholar
[61]
Choi, H.-I. and W.J. Williams, Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989. 37(6): pp.862-871.
DOI: 10.1109/assp.1989.28057
Google Scholar
[62]
Li, M., W. Zhao, and W. Jia, The Profile of Kernels in Time Frequency Distributions. Journal of Ship Mechanics, 1999. 3(6): p.49.
Google Scholar
[63]
Lazorenko, O., The use of atomic functions in the Choi-Williams analysis of ultrawideband signals. Radioelectronics and Communications Systems, 2009. 52(8): pp.397-404.
DOI: 10.3103/s0735272709080019
Google Scholar
[64]
Goodfellow, I., et al., Deep learning. Vol. 1. 2016: MIT press Cambridge.
Google Scholar
[65]
Haut, J.M., et al., Hyperspectral image classification using random occlusion data augmentation. IEEE Geoscience and Remote Sensing Letters, 2019. 16(11): pp.1751-1755.
DOI: 10.1109/lgrs.2019.2909495
Google Scholar
[66]
Ioffe, S. and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. in International conference on machine learning. 2015. PMLR.
Google Scholar
[67]
Park, H.-J., et al., Automated sleep stage scoring using hybrid rule-and case-based reasoning. Computers and Biomedical Research, 2000. 33(5): pp.330-349.
DOI: 10.1006/cbmr.2000.1549
Google Scholar
[68]
Cohen, J., A coefficient of agreement for nominal scales. Educational and psychological measurement, 1960. 20(1): pp.37-46.
DOI: 10.1177/001316446002000104
Google Scholar
[69]
Fleiss, J.L., Measuring nominal scale agreement among many raters. Psychological bulletin, 1971. 76(5): p.378.
DOI: 10.1037/h0031619
Google Scholar
[70]
Landis, J.R. and G.G. Koch, The measurement of observer agreement for categorical data. biometrics, 1977: pp.159-174.
DOI: 10.2307/2529310
Google Scholar
[71]
Michielli, N., U.R. Acharya, and F. Molinari, Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals. Computers in biology and medicine, 2019. 106: pp.71-81.
DOI: 10.1016/j.compbiomed.2019.01.013
Google Scholar
[72]
Wei, L., et al. Time-frequency convolutional neural network for automatic sleep stage classification based on single-channel EEG. in 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). 2017. IEEE.
DOI: 10.1109/ictai.2017.00025
Google Scholar