[1]
E.A. Makris, P. Hadidi, and K.A. Athanasiou, The knee meniscus: Structure-function, pathophysiology, current repair techniques, and prospects for regeneration, Biomaterials, vol. 32, no. 30 (2011), p.7411–7431.
DOI: 10.1016/j.biomaterials.2011.06.037
Google Scholar
[2]
K. Vadodaria, A. Kulkarni, E. Santhini, P. Vasudevan, Materials and structures used in meniscus repair and regeneration: a review, BioMedicine, Vol. 9, No. 1(2019) pp.11-22.
DOI: 10.1051/bmdcn/2019090102
Google Scholar
[3]
M.H. Hulet, Christophe Matteo Denti, J. Espregueira-Mendes, Hélder Pereira, and Vasilios Raoulis, Surgery of the Meniscus, Surg. Meniscus (2016), p.67–78.
DOI: 10.1007/978-3-662-49188-1_7
Google Scholar
[4]
A.J S. Fox, F. Wanivenhaus, A.J. Burge, R.F. Warren, and S.A. Rodeo, The human meniscus: A review of anatomy, function, injury, and advances in treatment, Clin. Anat., vol. 28, no. 2 (2015), p.269–287.
DOI: 10.1002/ca.22456
Google Scholar
[5]
H. Li, P. Li, Z. Yang, C. Gao, L. Fu, Z. Liao, T. Zhao, F. Cao, W. Chen, Y. Peng, Z. Yuan, X. Sui, S. Liu and Q. Guo, Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front. Cell Dev. Biol. 9:661802 (2021), pp.1-26.
DOI: 10.3389/fcell.2021.661802
Google Scholar
[6]
I.D. McDermott, S.D. Masouros, and A.A. Amis, Biomechanics of the menisci of the knee, Curr. Orthop., vol. 22, no. 3 (2008), p.193–201.
DOI: 10.1016/j.cuor.2008.04.005
Google Scholar
[7]
H. Kwon, W. E. Brown, C. A. Lee, D. Wang, N. Paschos, J. C. Hu, and K. A. Athanasiou, Surgical and tissue engineering strategies for articular cartilage and meniscus repair, Nat Rev Rheumatol., vol. 15, no. 9(2019), p.550–570.
DOI: 10.1038/s41584-019-0255-1
Google Scholar
[8]
S.P. Arnoczky, Building a meniscus. Biologic considerations., Clin. Orthop. Relat. Res., no. 367 Suppl (1999), p. S244-53.
Google Scholar
[9]
C. O. Kean, R. J. Brown and J. Chapman, The role of biomaterials in the treatment of meniscal tears, PeerJ (2017).
DOI: 10.7287/peerj.preprints.3111v1
Google Scholar
[10]
J.J. Rongen, T.G. van Tienen, B. van Bochove, D.W. Grijpma, and P. Buma, Biomaterials in search of a meniscus substitute, Biomaterials, vol. 35, no. 11 (2014), p.3527–3540.
DOI: 10.1016/j.biomaterials.2014.01.017
Google Scholar
[11]
G. Jacob, K. Shimomura, A. J. Krych and N. Nakamura, The Meniscus Tear: A Review of Stem Cell Therapies, Cells 2020, Vol. 9, No. 92 (2019), pp.1-17.
DOI: 10.3390/cells9010092
Google Scholar
[12]
B.L. Proffen, M. McElfresh, B.C. Fleming, and M.M. Murray, A comparative anatomical study of the human knee and six animal species, (2012).
DOI: 10.1016/j.knee.2011.07.005
Google Scholar
[13]
D. Deponti, A. Di Giancamillo, C. Scotti, G.M. Peretti, and I. Martin, Animal models for meniscus repair and regeneration, J. Tissue Eng. Regen. Med., vol. 9, no. 5 (2015), p.512–527.
DOI: 10.1002/term.1760
Google Scholar
[14]
I.D. McDermott, F. Sharifi, A.M.J. Bull, C.M. Gupte, R.W. Thomas, and A.A. Amis, An anatomical study of meniscal allograft sizing, Knee Surgery, Sport. Traumatol. Arthrosc., vol. 12, no. 2 (2004) p.130–135.
DOI: 10.1007/s00167-003-0366-7
Google Scholar
[15]
S. Arnoczky and C. Mc Devitt, The meniscus: Structure, function, repair, and replacement," Orthop. Basic Sci. (2000), p.531–545.
Google Scholar
[16]
B. Bilgen, C. T. Jayasuriya, and B. D. Owens, Current Concepts in Meniscus Tissue Engineering and Repair, Adv Healthc Mater. Vol. 7, No. 11(2018), pp.1-26.
DOI: 10.1002/adhm.201701407
Google Scholar
[17]
I.D. McDermott, S.D. Masouros, and A.A. Amis, Biomechanics of the menisci of the knee, Curr. Orthop., vol. 22, no. 3 (2008), p.193–201.
DOI: 10.1016/j.cuor.2008.04.005
Google Scholar
[18]
N. Pujol and P. Beaufils, Healing results of meniscal tears left in situ during anterior cruciate ligament reconstruction: a review of clinical studies., Knee Surg. Sports Traumatol. Arthrosc., vol. 17, no. 4 (2009), p.396–401.
DOI: 10.1007/s00167-008-0711-y
Google Scholar
[19]
P. Verdonk and P. Vererfve, Traumatic Lesions: Stable Knee, ACL Knee, in The Meniscus, P. Beaufils and R. Verdonk, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, (2010), p.45–49.
DOI: 10.1007/978-3-642-02450-4_6
Google Scholar
[20]
M. Chen, W. Guo, S. Gao, C. Hao, S. Shen, Z. Zhang, Z. Wang, Z. Wang, X. Li, X. Jing, X. Zhang, Z. Yuan, M. Wang, Y. Zhang, J. Peng, A. Wang, Y. Wang, X. Sui, S. Liu, and Q. Guo, Biochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration, BioMed Res. Intl., Vol. 2018, pp.1-15.
DOI: 10.1155/2018/8472309
Google Scholar
[21]
D.E. Kramer and L.J. Micheli, Meniscal tears and discoid meniscus in children: diagnosis and treatment., J. Am. Acad. Orthop. Surg., vol. 17, no. 11 (2009), p.698–707.
DOI: 10.5435/00124635-200911000-00004
Google Scholar
[22]
C. Laible, D.A. Stein, and D.N. Kiridly, Meniscal repair., J. Am. Acad. Orthop. Surg., vol. 21, no. 4 (2013), p.204–213.
Google Scholar
[23]
R. Verdonk et al., Indications and limits of meniscal allografts.," Injury, vol. 44 Suppl 1 (2013), p. S21-7.
Google Scholar
[24]
K.A. Milachowski, K. Weismeier, and C.J. Wirth, Homologous meniscus transplantation. Experimental and clinical results.," Int. Orthop., vol. 13, no. 1 (1989), p.1–11.
DOI: 10.1007/bf00266715
Google Scholar
[25]
M. Cucchiarini, A.L. McNulty, R.L. Mauck, L.A. Setton, F. Guilak, and H. Madry, Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus, Osteoarthritis Cartilage, Vol. 24, No. 8(2016), p.1330–1339.
DOI: 10.1016/j.joca.2016.03.018
Google Scholar
[26]
J. K. Venkatesan, A. Rey-Rico, & M. Cucchiarini, Current Trends in Viral Gene Therapy for Human Orthopaedic Regenerative Medicine, Tissue engineering and regenerative medicine, Vol. 16, No. 4(2019), p.345–355.
DOI: 10.1007/s13770-019-00179-x
Google Scholar
[27]
C. H. Evans & J. Huard, Gene therapy approaches to regenerating the musculoskeletal system. Nature reviews. Rheumatology, Vol. 11, No. 4(2015), p.234–242.
DOI: 10.1038/nrrheum.2015.28
Google Scholar
[28]
R.H. Brophy and M.J. Matava, Surgical options for meniscal replacement., J. Am. Acad. Orthop. Surg., vol. 20, no. 5 (2012), p.265–272.
Google Scholar
[29]
B.B. Mandal, S.H. Park, E.S. Gil, and D.L. Kaplan, Multilayered silk scaffolds for meniscus tissue engineering, Biomaterials, vol. 32, no. 2 (2011), p.639–651.
DOI: 10.1016/j.biomaterials.2010.08.115
Google Scholar
[30]
M. L. Tanaka , N. Vest, C. M. Ferguson & P. Gatenholm, Comparison of Biomechanical Properties of Native Menisci and Bacterial Cellulose Implant, International Journal of Polymeric Materials and Polymeric Biomaterials, Vol. 63, No. 17, (2014), pp.891-897.
DOI: 10.1080/00914037.2014.886226
Google Scholar
[31]
A. Leroy, P. Beaufils, B. Faivre, C. Steltzlen, P. Boisrenoult, and N. Pujol, Actifit® polyurethane meniscal scaffold: MRI and functional outcomes after a minimum follow-up of 5 years, Orthopaedics & Traumatology: Surgery & Research, Vol. 103, Issue 4(2017), pp.609-614.
DOI: 10.1016/j.otsr.2017.02.012
Google Scholar
[32]
C. Toanen, A. Dhollander, P. Bulgheroni, G. Filardo, S. Zaffagnini, T. Spalding, J.C. Monllau, P. Gelber, R. Verdonk, P. Beaufils, N. Pujol, E. Bulgheroni, L. Asplin, P. Verdonk, Polyurethane Meniscal Scaffold for the Treatment of Partial Meniscal Deficiency: 5-Year Follow-up Outcomes: A European Multicentric Study, Am J Sports Med, Vol. 48, No. 6(2020), pp.1347-1355.
DOI: 10.1177/0363546520913528
Google Scholar
[33]
R.T.C. Welsing et al., Effect on tissue differentiation and articular cartilage degradation of a polymer meniscus implant: A 2-year follow-up study in dogs., Am. J. Sports Med., vol. 36, no. 10 (2008), p.1978–(1989).
DOI: 10.1177/0363546508319900
Google Scholar
[34]
T. Toyonaga, N. Uezaki, and H. Chikama, Substitute meniscus of Teflon-net for the knee joint of dogs., Clin. Orthop. Relat. Res., no. 179 (1983), p.291–297.
DOI: 10.1097/00003086-198310000-00044
Google Scholar
[35]
K. Sommerlath and J. Gillquist, The effect of a meniscal prosthesis on knee biomechanics and cartilage. An experimental study in rabbits., Am. J. Sports Med., vol. 20, no. 1 (1992), p.73–81.
DOI: 10.1177/036354659202000117
Google Scholar
[36]
L. Coluccino, R. Gottardi, F. Ayadi, A. Athanassiou, R. S. Tuan, and L. Ceseracciu, Porous Poly(vinyl alcohol)-Based Hydrogel for Knee Meniscus Functional Repair, ACS Biomaterials Science & Engineering, Vol. 4, No. 5(2018), pp.1518-1527.
DOI: 10.1021/acsbiomaterials.7b00879
Google Scholar
[37]
A. Marrella, A. Lagazzo, E. Dellacasa, C. Pasquini, E. Finocchio, F. Barberis, L. Pastorino, P. Giannoni, S. Scaglione, 3D Porous Gelatin/PVA Hydrogel as Meniscus Substitute Using Alginate Micro-Particles as Porogens, Polymers. Vol. 10, No. 4 (2018), p.380.
DOI: 10.3390/polym10040380
Google Scholar
[38]
J. Zellner et al., Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone, J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 101, no. 7 (2013), p.1133–1142.
DOI: 10.1002/jbm.b.32922
Google Scholar
[39]
P. Angele, R. Kujat, M. Koch and J. Zellner, Role of mesenchymal stem cells in meniscal repair, Journal of Experimental Orthopaedics, Vol. 1, No. 12(2014), pp.1-9.
DOI: 10.1186/s40634-014-0012-y
Google Scholar
[40]
U.G. Longo, M. Loppini, F. Forriol, G. Romeo, N. Maffulli, and V. Denaro, Advances in Meniscal Tissue Engineering, Stem Cells International, Volume 2012, Article ID 420346, pp.1-7.
DOI: 10.1155/2012/420346
Google Scholar
[41]
J.W. Griffin, M.M. Hadeed, B.C. Werner, D.R. Diduch, E.W. Carson, M.D. Miller. Platelet-rich plasma in meniscal repair: does augmentation improve surgical outcomes?, Clin Orthop Relat Res. Vol. 473, No. 5(2015), pp.1665-72.
DOI: 10.1007/s11999-015-4170-8
Google Scholar
[42]
M.B. Pabbruwe, W. Kafienah, J.F. Tarlton, S. Mistry, D.J. Fox, and A.P. Hollander, Repair of meniscal cartilage white zone tears using a stem cell/collagen-scaffold implant, Biomaterials, vol. 31, no. 9 (2010), p.2583–2591.
DOI: 10.1016/j.biomaterials.2009.12.023
Google Scholar
[43]
G. Jacob, K. Shimomura, A. J. Krych, and N. Nakamura, The Meniscus Tear: A Review of Stem Cell Therapies, Cells, 9, 92 (2020), pp.1-17.
DOI: 10.3390/cells9010092
Google Scholar
[44]
R. F. MacBarb, E. A. Makris, J. C. Hu, and K. A. Athanasiou, A chondroitinase-ABC and TGF-𝛽1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage,, Acta Biomaterialia, vol. 9, no. 1, p.4626–4634, (2013).
DOI: 10.1016/j.actbio.2012.09.037
Google Scholar
[45]
J. L. Puetzer, B. N. Brown, J. J. Ballyns, and L. J. Bonassar, The effect of IGF-I on anatomically shaped tissue-engineered menisci,, Tissue Engineering Part: A, vol. 19, no. 11-12, p.1443– 1450, (2013).
DOI: 10.1089/ten.tea.2012.0645
Google Scholar
[46]
Y. I. Kim, J.-S. Ryu, J. E. Yeo et al., Overexpression of TGF- 𝛽1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells,, Biochemical and Biophysical Research Communications, vol. 450, no. 4, p.1593–1599, (2014).
DOI: 10.1016/j.bbrc.2014.07.045
Google Scholar
[47]
F. Forriol, P. Ripalda, J. Duart, R. Esparza, and A. R. Gortazar, Meniscal repair possibilities using bone morphogenetic protein-7,, Injury, vol. 45, no. 4, pp. S15–S21, (2014).
DOI: 10.1016/s0020-1383(14)70005-1
Google Scholar
[48]
A. I. Bochynska, G. Hannink, R. Verhoeven, D. W. Grijpma, and P. Buma, The effect of tissue surface modification with collagenase and addition of TGF-𝛽3 on the healing potential of meniscal tears repaired with tissue glues in vitro,, Journal of Materials Science: Materials in Medicine, vol. 28, no. 1, article no. 22, (2017).
DOI: 10.1007/s10856-016-5832-0
Google Scholar
[49]
A. Abbadessa, J. Crecente-Campo, & M.J. Alonso, Engineering anisotropic meniscus: zonal functionality and spatio-temporal drug delivery. Tissue Engineering Part B: Reviews. Vol. 27, No. 2 (2021), pp.133-154.
DOI: 10.1089/ten.teb.2020.0096
Google Scholar
[50]
G.K. Tan and J.J. Cooper-White, Interactions of meniscal cells with extracellular matrix molecules: Towards the generation of tissue engineered menisci, Cell Adhes. Migr., vol. 5, no. 3 (2011), p.220–226.
DOI: 10.4161/cam.5.3.14463
Google Scholar
[51]
Moradi, L., Vasei, M., Dehghan, M. M., Majidi, M., Farzad Mohajeri, S., and Bonakdar, S. (2017). Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: in vivo study. Biomaterials 126, 18–30.
DOI: 10.1016/j.biomaterials.2017.02.022
Google Scholar
[52]
Baek, J., Lotz, M. K., and D'Lima, D. D. (2019). Core-Shell nanofibrous scaffolds for repair of meniscus tears. Tissue Eng. Part A 25, 1577–1590.
DOI: 10.1089/ten.tea.2018.0319
Google Scholar
[53]
Sun, Y., You, Y., Jiang, W., Wu, Q., Wang, B., and Dai, K. (2020). Generating ready-to-implant anisotropic menisci by 3D-bioprinting protein-releasing cellladen hydrogel-polymer composite scaffold. Appl. Mater. Today 18:100469.
DOI: 10.1016/j.apmt.2019.100469
Google Scholar
[54]
Cojocaru, D. G., Hondke, S., Kruger, J. P., Bosch, C., Croicu, C., Florescu, S., et al. (2020). Meniscus-shaped cell-free polyglycolic acid scaffold for meniscal repair in a sheep model. J. Biomed. Mater. Res. B Appl. Biomater. 108, 809–818.
DOI: 10.1002/jbm.b.34435
Google Scholar
[55]
Chae, S., Lee, S. S., Choi, Y. J., Hong, D. H., Gao, G., Wang, J. H., et al. (2021). 3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink. Biomaterials 267:120466.
DOI: 10.1016/j.biomaterials.2020.120466
Google Scholar
[56]
Smyth, P.A., Green, I., Jackson, R.L., Hanson, R.R., (2014). Biomimetic Model of Articular Cartilage Based on In Vitro Experiments. Journal of Biomimetics, Biomaterials and Biomedical Engineering 21, 75–91.
DOI: 10.4028/www.scientific.net/jbbbe.21.75
Google Scholar
[57]
Puttawibul, P., Benjakul, S., Meesane, J., (2014). Freeze-Thawed Hybridized Preparation with Biomimetic Self-Assembly for a Polyvinyl Alcohol/Collagen Hydrogel Created for Meniscus Tissue Engineering. Journal of Biomimetics, Biomaterials and Biomedical Engineering 21, 17–33.
DOI: 10.4028/www.scientific.net/jbbbe.21.17
Google Scholar
[58]
Trad, Z., Barkaoui, A., & Chafra, M. (2017). A Three Dimensional Finite Element Analysis of Mechanical Stresses in the Human Knee Joint: Problem of Cartilage Destruction. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 32, 29–39.
DOI: 10.4028/www.scientific.net/jbbbe.32.29
Google Scholar
[59]
Chan, A., Young, N., Tran, G. T., Miles, B., Ruys, A., & Boughton, P. (2012). A Novel Patient-Specific Regenerative Meniscal Replacement System. Journal of Biomimetics, Biomaterials and Tissue Engineering, 16, 83–95.
DOI: 10.4028/www.scientific.net/jbbte.16.83
Google Scholar