The Cell-Material Interaction in the Replacement and Regeneration of the Meniscus: A Mini-Review

Article Preview

Abstract:

The meniscus is a part of the knee joint consisting of a medial and lateral component between the femoral condyles and the tibial plateau. Meniscal tears usually happen in younger and active people due to sports or daily activities. Some approaches are chosen for meniscus replacement and regeneration from the problems above, such as meniscal repair, meniscal allograft transplantation, gene therapy techniques, and tissue engineering techniques. Biomaterials and tissue engineering have a primary role in meniscus regeneration and replacement. The cell-material interactions are influenced by the biomaterials' design, structure, and composition to promote the growth o meniscus tissue. This study aims to give a brief review of the cell-material interaction in the replacement and regeneration process of the meniscus. Based on several studies, the use of growth factors in the meniscal regeneration and replacement could modulate and promote angiogenesis, differentiation, and cell migration beneficial in the repair process of the meniscus. Furthermore, combining the Mesenchymal Stem Cells and growth factors in healing the meniscal tears could be one of the best approaches to obtaining the new tissue resembling the meniscal tissue. The follow-up and long-term studies in meniscus regeneration and replacement are needed and recommended, especially implanting with good chondroprotective and long-term evaluation to obtain the best properties similar to the natural meniscus.

You might also be interested in these eBooks

Info:

Pages:

56-67

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.A. Makris, P. Hadidi, and K.A. Athanasiou, The knee meniscus: Structure-function, pathophysiology, current repair techniques, and prospects for regeneration, Biomaterials, vol. 32, no. 30 (2011), p.7411–7431.

DOI: 10.1016/j.biomaterials.2011.06.037

Google Scholar

[2] K. Vadodaria, A. Kulkarni, E. Santhini, P. Vasudevan, Materials and structures used in meniscus repair and regeneration: a review, BioMedicine, Vol. 9, No. 1(2019) pp.11-22.

DOI: 10.1051/bmdcn/2019090102

Google Scholar

[3] M.H. Hulet, Christophe Matteo Denti, J. Espregueira-Mendes, Hélder Pereira, and Vasilios Raoulis, Surgery of the Meniscus, Surg. Meniscus (2016), p.67–78.

DOI: 10.1007/978-3-662-49188-1_7

Google Scholar

[4] A.J S. Fox, F. Wanivenhaus, A.J. Burge, R.F. Warren, and S.A. Rodeo, The human meniscus: A review of anatomy, function, injury, and advances in treatment, Clin. Anat., vol. 28, no. 2 (2015), p.269–287.

DOI: 10.1002/ca.22456

Google Scholar

[5] H. Li, P. Li, Z. Yang, C. Gao, L. Fu, Z. Liao, T. Zhao, F. Cao, W. Chen, Y. Peng, Z. Yuan, X. Sui, S. Liu and Q. Guo, Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front. Cell Dev. Biol. 9:661802 (2021), pp.1-26.

DOI: 10.3389/fcell.2021.661802

Google Scholar

[6] I.D. McDermott, S.D. Masouros, and A.A. Amis, Biomechanics of the menisci of the knee, Curr. Orthop., vol. 22, no. 3 (2008), p.193–201.

DOI: 10.1016/j.cuor.2008.04.005

Google Scholar

[7] H. Kwon, W. E. Brown, C. A. Lee, D. Wang, N. Paschos, J. C. Hu, and K. A. Athanasiou, Surgical and tissue engineering strategies for articular cartilage and meniscus repair, Nat Rev Rheumatol., vol. 15, no. 9(2019), p.550–570.

DOI: 10.1038/s41584-019-0255-1

Google Scholar

[8] S.P. Arnoczky, Building a meniscus. Biologic considerations., Clin. Orthop. Relat. Res., no. 367 Suppl (1999), p. S244-53.

Google Scholar

[9] C. O. Kean, R. J. Brown and J. Chapman, The role of biomaterials in the treatment of meniscal tears, PeerJ (2017).

DOI: 10.7287/peerj.preprints.3111v1

Google Scholar

[10] J.J. Rongen, T.G. van Tienen, B. van Bochove, D.W. Grijpma, and P. Buma, Biomaterials in search of a meniscus substitute, Biomaterials, vol. 35, no. 11 (2014), p.3527–3540.

DOI: 10.1016/j.biomaterials.2014.01.017

Google Scholar

[11] G. Jacob, K. Shimomura, A. J. Krych and N. Nakamura, The Meniscus Tear: A Review of Stem Cell Therapies, Cells 2020, Vol. 9, No. 92 (2019), pp.1-17.

DOI: 10.3390/cells9010092

Google Scholar

[12] B.L. Proffen, M. McElfresh, B.C. Fleming, and M.M. Murray, A comparative anatomical study of the human knee and six animal species, (2012).

DOI: 10.1016/j.knee.2011.07.005

Google Scholar

[13] D. Deponti, A. Di Giancamillo, C. Scotti, G.M. Peretti, and I. Martin, Animal models for meniscus repair and regeneration, J. Tissue Eng. Regen. Med., vol. 9, no. 5 (2015), p.512–527.

DOI: 10.1002/term.1760

Google Scholar

[14] I.D. McDermott, F. Sharifi, A.M.J. Bull, C.M. Gupte, R.W. Thomas, and A.A. Amis, An anatomical study of meniscal allograft sizing, Knee Surgery, Sport. Traumatol. Arthrosc., vol. 12, no. 2 (2004) p.130–135.

DOI: 10.1007/s00167-003-0366-7

Google Scholar

[15] S. Arnoczky and C. Mc Devitt, The meniscus: Structure, function, repair, and replacement," Orthop. Basic Sci. (2000), p.531–545.

Google Scholar

[16] B. Bilgen, C. T. Jayasuriya, and B. D. Owens, Current Concepts in Meniscus Tissue Engineering and Repair, Adv Healthc Mater. Vol. 7, No. 11(2018), pp.1-26.

DOI: 10.1002/adhm.201701407

Google Scholar

[17] I.D. McDermott, S.D. Masouros, and A.A. Amis, Biomechanics of the menisci of the knee, Curr. Orthop., vol. 22, no. 3 (2008), p.193–201.

DOI: 10.1016/j.cuor.2008.04.005

Google Scholar

[18] N. Pujol and P. Beaufils, Healing results of meniscal tears left in situ during anterior cruciate ligament reconstruction: a review of clinical studies., Knee Surg. Sports Traumatol. Arthrosc., vol. 17, no. 4 (2009), p.396–401.

DOI: 10.1007/s00167-008-0711-y

Google Scholar

[19] P. Verdonk and P. Vererfve, Traumatic Lesions: Stable Knee, ACL Knee, in The Meniscus, P. Beaufils and R. Verdonk, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, (2010), p.45–49.

DOI: 10.1007/978-3-642-02450-4_6

Google Scholar

[20] M. Chen, W. Guo, S. Gao, C. Hao, S. Shen, Z. Zhang, Z. Wang, Z. Wang, X. Li, X. Jing, X. Zhang, Z. Yuan, M. Wang, Y. Zhang, J. Peng, A. Wang, Y. Wang, X. Sui, S. Liu, and Q. Guo, Biochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration, BioMed Res. Intl., Vol. 2018, pp.1-15.

DOI: 10.1155/2018/8472309

Google Scholar

[21] D.E. Kramer and L.J. Micheli, Meniscal tears and discoid meniscus in children: diagnosis and treatment., J. Am. Acad. Orthop. Surg., vol. 17, no. 11 (2009), p.698–707.

DOI: 10.5435/00124635-200911000-00004

Google Scholar

[22] C. Laible, D.A. Stein, and D.N. Kiridly, Meniscal repair., J. Am. Acad. Orthop. Surg., vol. 21, no. 4 (2013), p.204–213.

Google Scholar

[23] R. Verdonk et al., Indications and limits of meniscal allografts.," Injury, vol. 44 Suppl 1 (2013), p. S21-7.

Google Scholar

[24] K.A. Milachowski, K. Weismeier, and C.J. Wirth, Homologous meniscus transplantation. Experimental and clinical results.," Int. Orthop., vol. 13, no. 1 (1989), p.1–11.

DOI: 10.1007/bf00266715

Google Scholar

[25] M. Cucchiarini, A.L. McNulty, R.L. Mauck, L.A. Setton, F. Guilak, and H. Madry, Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus, Osteoarthritis Cartilage, Vol. 24, No. 8(2016), p.1330–1339.

DOI: 10.1016/j.joca.2016.03.018

Google Scholar

[26] J. K. Venkatesan, A. Rey-Rico, & M. Cucchiarini, Current Trends in Viral Gene Therapy for Human Orthopaedic Regenerative Medicine, Tissue engineering and regenerative medicine, Vol. 16, No. 4(2019), p.345–355.

DOI: 10.1007/s13770-019-00179-x

Google Scholar

[27] C. H. Evans & J. Huard, Gene therapy approaches to regenerating the musculoskeletal system. Nature reviews. Rheumatology, Vol. 11, No. 4(2015), p.234–242.

DOI: 10.1038/nrrheum.2015.28

Google Scholar

[28] R.H. Brophy and M.J. Matava, Surgical options for meniscal replacement., J. Am. Acad. Orthop. Surg., vol. 20, no. 5 (2012), p.265–272.

Google Scholar

[29] B.B. Mandal, S.H. Park, E.S. Gil, and D.L. Kaplan, Multilayered silk scaffolds for meniscus tissue engineering, Biomaterials, vol. 32, no. 2 (2011), p.639–651.

DOI: 10.1016/j.biomaterials.2010.08.115

Google Scholar

[30] M. L. Tanaka , N. Vest, C. M. Ferguson & P. Gatenholm, Comparison of Biomechanical Properties of Native Menisci and Bacterial Cellulose Implant, International Journal of Polymeric Materials and Polymeric Biomaterials, Vol. 63, No. 17, (2014), pp.891-897.

DOI: 10.1080/00914037.2014.886226

Google Scholar

[31] A. Leroy, P. Beaufils, B. Faivre, C. Steltzlen, P. Boisrenoult, and N. Pujol, Actifit® polyurethane meniscal scaffold: MRI and functional outcomes after a minimum follow-up of 5 years, Orthopaedics & Traumatology: Surgery & Research, Vol. 103, Issue 4(2017), pp.609-614.

DOI: 10.1016/j.otsr.2017.02.012

Google Scholar

[32] C. Toanen, A. Dhollander, P. Bulgheroni, G. Filardo, S. Zaffagnini, T. Spalding, J.C. Monllau, P. Gelber, R. Verdonk, P. Beaufils, N. Pujol, E. Bulgheroni, L. Asplin, P. Verdonk, Polyurethane Meniscal Scaffold for the Treatment of Partial Meniscal Deficiency: 5-Year Follow-up Outcomes: A European Multicentric Study, Am J Sports Med, Vol. 48, No. 6(2020), pp.1347-1355.

DOI: 10.1177/0363546520913528

Google Scholar

[33] R.T.C. Welsing et al., Effect on tissue differentiation and articular cartilage degradation of a polymer meniscus implant: A 2-year follow-up study in dogs., Am. J. Sports Med., vol. 36, no. 10 (2008), p.1978–(1989).

DOI: 10.1177/0363546508319900

Google Scholar

[34] T. Toyonaga, N. Uezaki, and H. Chikama, Substitute meniscus of Teflon-net for the knee joint of dogs., Clin. Orthop. Relat. Res., no. 179 (1983), p.291–297.

DOI: 10.1097/00003086-198310000-00044

Google Scholar

[35] K. Sommerlath and J. Gillquist, The effect of a meniscal prosthesis on knee biomechanics and cartilage. An experimental study in rabbits., Am. J. Sports Med., vol. 20, no. 1 (1992), p.73–81.

DOI: 10.1177/036354659202000117

Google Scholar

[36] L. Coluccino, R. Gottardi, F. Ayadi, A. Athanassiou, R. S. Tuan, and L. Ceseracciu, Porous Poly(vinyl alcohol)-Based Hydrogel for Knee Meniscus Functional Repair, ACS Biomaterials Science & Engineering, Vol. 4, No. 5(2018), pp.1518-1527.

DOI: 10.1021/acsbiomaterials.7b00879

Google Scholar

[37] A. Marrella, A. Lagazzo, E. Dellacasa, C. Pasquini, E. Finocchio, F. Barberis, L. Pastorino, P. Giannoni, S. Scaglione, 3D Porous Gelatin/PVA Hydrogel as Meniscus Substitute Using Alginate Micro-Particles as Porogens, Polymers. Vol. 10, No. 4 (2018), p.380.

DOI: 10.3390/polym10040380

Google Scholar

[38] J. Zellner et al., Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone, J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 101, no. 7 (2013), p.1133–1142.

DOI: 10.1002/jbm.b.32922

Google Scholar

[39] P. Angele, R. Kujat, M. Koch and J. Zellner, Role of mesenchymal stem cells in meniscal repair, Journal of Experimental Orthopaedics, Vol. 1, No. 12(2014), pp.1-9.

DOI: 10.1186/s40634-014-0012-y

Google Scholar

[40] U.G. Longo, M. Loppini, F. Forriol, G. Romeo, N. Maffulli, and V. Denaro, Advances in Meniscal Tissue Engineering, Stem Cells International, Volume 2012, Article ID 420346, pp.1-7.

DOI: 10.1155/2012/420346

Google Scholar

[41] J.W. Griffin, M.M. Hadeed, B.C. Werner, D.R. Diduch, E.W. Carson, M.D. Miller. Platelet-rich plasma in meniscal repair: does augmentation improve surgical outcomes?, Clin Orthop Relat Res. Vol. 473, No. 5(2015), pp.1665-72.

DOI: 10.1007/s11999-015-4170-8

Google Scholar

[42] M.B. Pabbruwe, W. Kafienah, J.F. Tarlton, S. Mistry, D.J. Fox, and A.P. Hollander, Repair of meniscal cartilage white zone tears using a stem cell/collagen-scaffold implant, Biomaterials, vol. 31, no. 9 (2010), p.2583–2591.

DOI: 10.1016/j.biomaterials.2009.12.023

Google Scholar

[43] G. Jacob, K. Shimomura, A. J. Krych, and N. Nakamura, The Meniscus Tear: A Review of Stem Cell Therapies, Cells, 9, 92 (2020), pp.1-17.

DOI: 10.3390/cells9010092

Google Scholar

[44] R. F. MacBarb, E. A. Makris, J. C. Hu, and K. A. Athanasiou, A chondroitinase-ABC and TGF-𝛽1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage,, Acta Biomaterialia, vol. 9, no. 1, p.4626–4634, (2013).

DOI: 10.1016/j.actbio.2012.09.037

Google Scholar

[45] J. L. Puetzer, B. N. Brown, J. J. Ballyns, and L. J. Bonassar, The effect of IGF-I on anatomically shaped tissue-engineered menisci,, Tissue Engineering Part: A, vol. 19, no. 11-12, p.1443– 1450, (2013).

DOI: 10.1089/ten.tea.2012.0645

Google Scholar

[46] Y. I. Kim, J.-S. Ryu, J. E. Yeo et al., Overexpression of TGF- 𝛽1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells,, Biochemical and Biophysical Research Communications, vol. 450, no. 4, p.1593–1599, (2014).

DOI: 10.1016/j.bbrc.2014.07.045

Google Scholar

[47] F. Forriol, P. Ripalda, J. Duart, R. Esparza, and A. R. Gortazar, Meniscal repair possibilities using bone morphogenetic protein-7,, Injury, vol. 45, no. 4, pp. S15–S21, (2014).

DOI: 10.1016/s0020-1383(14)70005-1

Google Scholar

[48] A. I. Bochynska, G. Hannink, R. Verhoeven, D. W. Grijpma, and P. Buma, The effect of tissue surface modification with collagenase and addition of TGF-𝛽3 on the healing potential of meniscal tears repaired with tissue glues in vitro,, Journal of Materials Science: Materials in Medicine, vol. 28, no. 1, article no. 22, (2017).

DOI: 10.1007/s10856-016-5832-0

Google Scholar

[49] A. Abbadessa, J. Crecente-Campo, & M.J. Alonso, Engineering anisotropic meniscus: zonal functionality and spatio-temporal drug delivery. Tissue Engineering Part B: Reviews. Vol. 27, No. 2 (2021), pp.133-154.

DOI: 10.1089/ten.teb.2020.0096

Google Scholar

[50] G.K. Tan and J.J. Cooper-White, Interactions of meniscal cells with extracellular matrix molecules: Towards the generation of tissue engineered menisci, Cell Adhes. Migr., vol. 5, no. 3 (2011), p.220–226.

DOI: 10.4161/cam.5.3.14463

Google Scholar

[51] Moradi, L., Vasei, M., Dehghan, M. M., Majidi, M., Farzad Mohajeri, S., and Bonakdar, S. (2017). Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: in vivo study. Biomaterials 126, 18–30.

DOI: 10.1016/j.biomaterials.2017.02.022

Google Scholar

[52] Baek, J., Lotz, M. K., and D'Lima, D. D. (2019). Core-Shell nanofibrous scaffolds for repair of meniscus tears. Tissue Eng. Part A 25, 1577–1590.

DOI: 10.1089/ten.tea.2018.0319

Google Scholar

[53] Sun, Y., You, Y., Jiang, W., Wu, Q., Wang, B., and Dai, K. (2020). Generating ready-to-implant anisotropic menisci by 3D-bioprinting protein-releasing cellladen hydrogel-polymer composite scaffold. Appl. Mater. Today 18:100469.

DOI: 10.1016/j.apmt.2019.100469

Google Scholar

[54] Cojocaru, D. G., Hondke, S., Kruger, J. P., Bosch, C., Croicu, C., Florescu, S., et al. (2020). Meniscus-shaped cell-free polyglycolic acid scaffold for meniscal repair in a sheep model. J. Biomed. Mater. Res. B Appl. Biomater. 108, 809–818.

DOI: 10.1002/jbm.b.34435

Google Scholar

[55] Chae, S., Lee, S. S., Choi, Y. J., Hong, D. H., Gao, G., Wang, J. H., et al. (2021). 3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink. Biomaterials 267:120466.

DOI: 10.1016/j.biomaterials.2020.120466

Google Scholar

[56] Smyth, P.A., Green, I., Jackson, R.L., Hanson, R.R., (2014). Biomimetic Model of Articular Cartilage Based on In Vitro Experiments. Journal of Biomimetics, Biomaterials and Biomedical Engineering 21, 75–91.

DOI: 10.4028/www.scientific.net/jbbbe.21.75

Google Scholar

[57] Puttawibul, P., Benjakul, S., Meesane, J., (2014). Freeze-Thawed Hybridized Preparation with Biomimetic Self-Assembly for a Polyvinyl Alcohol/Collagen Hydrogel Created for Meniscus Tissue Engineering. Journal of Biomimetics, Biomaterials and Biomedical Engineering 21, 17–33.

DOI: 10.4028/www.scientific.net/jbbbe.21.17

Google Scholar

[58] Trad, Z., Barkaoui, A., & Chafra, M. (2017). A Three Dimensional Finite Element Analysis of Mechanical Stresses in the Human Knee Joint: Problem of Cartilage Destruction. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 32, 29–39.

DOI: 10.4028/www.scientific.net/jbbbe.32.29

Google Scholar

[59] Chan, A., Young, N., Tran, G. T., Miles, B., Ruys, A., & Boughton, P. (2012). A Novel Patient-Specific Regenerative Meniscal Replacement System. Journal of Biomimetics, Biomaterials and Tissue Engineering, 16, 83–95.

DOI: 10.4028/www.scientific.net/jbbte.16.83

Google Scholar