Finite Element Analysis Contact Stresses on Tibiofemoral Joint and Post Polyethylene Components Used to Evaluated Predesign Knee Implant

Article Preview

Abstract:

At the time of prayer, most Muslims kneel with fully extended limbs (between 150° and 165°). Meanwhile, incidents such as hyperflexion in total knee arthroplasty (TKA) implant outside their designated configuration can lead wear or fracture of the polyethylene component. In this study, polyethylene component of posterior-stabilized right knee joint implant have been developed to facilitate higher range of motion (ROM). Finite element analysis (FEA) was used to analyze contact stresses on the polyethylene component. FEA was used to simulate weight-bearing condition at 0°, 30°, 60°, 90°, 120°, and 150° of knee flexion. Modified polyethylene component results in better performance in terms of contact stresses, especially at 120° of knee flexion. Current result shows contact stresses above 120 MPa were measured at the posterior post polyethylene, when 4000 N force was applied. Minimum contact stress on the medial condyles was 630 KPa at 120° of knee flexion, while on the lateral condyles, the minimum contact stress was 250 KPa at 150° of knee flexion. With this finding, the current polyethylene component design is expected to accommodate deep knee flexion movement in daily activities and can reduce potential of wear or fracture of the polyethylene component during deep knee flexion.

You might also be interested in these eBooks

Info:

Pages:

46-55

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. N. Villar, V. K. Solomon, and J. Rangam: Knee surgery and the Indian Knee, Trop. Doct., vol. 19, no. 1, p.21–24, 1989,.

DOI: 10.1177/004947558901900107

Google Scholar

[2] A. Ahlberg, M. Moussa, and M. Al-Nahdi: On Geographical Variations in the Normal Range of Joint Motion, Clin. Orthop. Relat. Res., vol. Number 234, (1988).

DOI: 10.1097/00003086-198809000-00040

Google Scholar

[3] M.S. Hefzy, B.P. Kelly, and T.D.V. Cooke: Kinematics of the knee joint in deep flexion: A radiographic assessment, Med. Eng. Phys., vol. 20, no. 4, p.302–307, 1998,.

DOI: 10.1016/S1350-4533(98)00024-1

Google Scholar

[4] G. Li et al.: Knee kinematics with a high-flexion posterior stabilized total knee prosthesis: An in vitro robotic experimental investigation, J. Bone Jt. Surg. - Ser. A, vol. 86, no. 8, p.1721–1729, 2004,.

DOI: 10.2106/00004623-200408000-00017

Google Scholar

[5] K. Thiele, C. Perka, G. Matziolis, H. O. Mayr, M. Sostheim, and R. Hube: Wear Is Less Common in Revision Surgery, J. BONE Jt. Surg., p.715–720, (2015).

DOI: 10.2106/jbjs.m.01534

Google Scholar

[6] B.G. Pijls: Polyethylene thickness is a risk factor for wear necessitating insert exchange, Int. Orthop., p.1175–1180, 2012,.

DOI: 10.1007/s00264-011-1412-6

Google Scholar

[7] P. Massin: How does total knee replacement technique influence polyethylene wear?, Orthop. Traumatol. Surg. Res., 2016,.

Google Scholar

[8] P. Tzanetis, M.A. Marra, R. Fluit, B. Koopman, and N. Verdonschot: Biomechanical Consequences of Tibial Insert Thickness after Total Knee Arthroplasty : A Musculoskeletal Simulation Study, MDPI, (2021).

DOI: 10.3390/app11052423

Google Scholar

[9] S. P. Garceau, Y. S. Warschawski, A. Tang, E. B. Sanders, R. M. Schwarzkopf, and D. J. Backstein: The Effect of Polyethylene Liner Thickness on Patient Outcomes and Failure After Primary Total Knee Arthroplasty, J. Arthroplasty, vol. 35, no. 8, p.2072–2075, 2020,.

DOI: 10.1016/j.arth.2020.03.017

Google Scholar

[10] D. A. Crawford, L. Lapsley, J. M. Hurst, M. J. Morris, A. V. L. Jr, and K. R. Berend: Impact of Polyethylene Thickness on Clinical Outcomes and Survivorship in Medial Mobile-Bearing Unicondylar Knee Arthroplasty, J. Arthroplasty, vol. 36, no. 7, p.2440–2444, 2021,.

DOI: 10.1016/j.arth.2021.02.062

Google Scholar

[11] M. Lo Presti et al.: Surgery & Research Bearing thickness of unicompartmental knee arthroplasty is a reliable predictor of tibial bone loss during revision to total knee arthroplasty, Orthop. Traumatol. Surg. Res., vol. 106, no. 3, p.429–434, 2020,.

DOI: 10.1016/j.otsr.2019.12.018

Google Scholar

[12] D. Casey, J. Cottrell, E. Dicarlo, R. Windsor, and T. Wright: PFC Knee Replacement, Clin. Orthop. Relat. Res., no. 464, p.157–163, 2007,.

DOI: 10.1097/blo.0b013e3181591c62

Google Scholar

[13] E. Reay, J. Wu, J. Holland, and D. Deehan: Premature failure of Kinemax Plus total knee replacements, J. BONE Jt. Surg., p.604–611, 2001,.

DOI: 10.1302/0301-620x.91b5.21525

Google Scholar

[14] H. D. Clarke, K. R. Math, and G. R. Scuderi: Case Report Polyethylene Post Failure in Posterior Stabilized Total Knee Arthroplasty, J. Arthroplasty, vol. 19, no. 5, p.652–657, 2004,.

DOI: 10.1016/j.arth.2004.02.026

Google Scholar

[15] D. R. Mauerhan: Case Report Fracture of the Polyethylene Tibial Post in a Posterior Cruciate – Substituting Total Knee Arthroplasty Mimicking Patellar Clunk Syndrome A Report of 5 Cases, J. Arthroplasty, vol. 18, no. 7, p.942–945, 2003,.

DOI: 10.1016/s0883-5403(03)00333-4

Google Scholar

[16] S. Puloski: Post Wear In Posterior Stabilized TKA : An Unrecognized Source Of Polyethylene Debris, 46th Annu. Meet. Orthop. Res. Soc. March 12-15, 2000, Orlando, Florida, no. 403, p.7709, (2000).

Google Scholar

[17] N. M. A. Azam, R. Daud, M. A. H, J. Ramli, M. F. B. Hassan, and A. Shah: The Effect of Knee Flexion Angle on Contact Stress of Total Knee Arthroplasty, MATEC Web Conf. 225, vol. 03009, p.2–7, (2018).

DOI: 10.1051/matecconf/201822503009

Google Scholar

[18] K. Kang, J. Son, S. K. Kwon, and O. Kwon: Finite element analysis for the biomechanical effect of tibial insert materials in total knee arthroplasty, Compos. Struct., 2018,.

DOI: 10.1016/j.compstruct.2018.06.036

Google Scholar

[19] J. Zhang, Z. Chen, L. Wang, and D. Li: Load application for the contact mechanics analysis and wear prediction of total knee replacement, J Eng. Med., vol. 231, no. 5, p.444–454, 2017,.

DOI: 10.1177/0954411917693880

Google Scholar

[20] M. Ishikawa, S. Kuriyama, H. Ito, and M. Furu: The Knee Kinematic alignment produces near-normal knee motion but increases contact stress after total knee arthroplasty : A case study on a single implant design, Knee, 2015,.

DOI: 10.1016/j.knee.2015.02.019

Google Scholar

[21] Y. Tanaka et al.: Clinical Biomechanics How exactly can computer simulation predict the kinematics and contact status after TKA ? Examination in individualized models, JCLB, vol. 39, p.65–70, 2016,.

DOI: 10.1016/j.clinbiomech.2016.09.006

Google Scholar

[22] Y. Tanaka et al.: Clinical Biomechanics Medial tilting of the joint line in posterior stabilized total knee arthroplasty increases contact force and stress, Clin. Biomech., vol. 53, no. February, p.54–59, 2018,.

DOI: 10.1016/j.clinbiomech.2018.02.008

Google Scholar

[23] S. Kuriyama, M. Ishikawa, M. Furu, H. Ito, and S. Matsuda: Malrotated Tibial Component Increases Medial Collateral Ligament Tension in Total Knee Arthroplasty, J. Orthop. Res., no. December, p.1658–1666, 2014,.

DOI: 10.1002/jor.22711

Google Scholar

[24] P. S. Walker et al.: Technical Note, J. Biomechanics vol. 30, no. 1, p.83–89, (1997).

Google Scholar

[25] S. M. Kurtz, O. K. Muratoglu, M. Evans, and A. A. Edidin: Advances in the processing , sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty, Biomaterials, vol. 20, (1999).

DOI: 10.1016/s0142-9612(99)00053-8

Google Scholar

[26] N. A. Patil, J. Njuguna, and B. Kandasubramanian: UHMWPE for biomedical applications : Performance and functionalization, Eur. Polym. J., vol. 125, no. January, 2020,.

DOI: 10.1016/j.eurpolymj.2020.109529

Google Scholar

[27] N. Kumar and A. Kumar: A Review of Use FEM Techniques in Modeling of Human Knee Joint, Journal of Biomimetics, Biomaterials and Biomedical Engineering vol. 28, p.14–25, 2016,.

DOI: 10.4028/www.scientific.net/jbbbe.28.14

Google Scholar

[28] E. Pen, B. Calvo, M. A. Martı, and M. Doblare: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint, Journal of Biomechanics vol. 39, p.1686–1701, 2006,.

DOI: 10.1016/j.jbiomech.2005.04.030

Google Scholar

[29] L. Kun, R. Pavel, and R. Kocich: Design , analysis and veri fi cation of a knee joint oncological prosthesis fi nite element model, Computers in Biology and Medicine vol. 54, p.53–60, 2014,.

DOI: 10.1016/j.compbiomed.2014.08.021

Google Scholar

[30] A. Mestar, S. Zahaf, N. Zina, and A. Boutaous: Development and Validation of a Numerical Model for the Mechanical Behavior of Knee Prosthesis Analyzed by the Finite Elements Method, Journal of Biomimetics, Biomaterials and Biomedical Engineering vol. 37, p.12–42, 2018,.

DOI: 10.4028/www.scientific.net/jbbbe.37.12

Google Scholar

[31] Akano Theddeus Tochukwu: Numerical Study of Prosthetic Knee Replacement Using Finite Element Analysis, Journal of Biomimetics, Biomaterials and Biomedical Engineering vol. 44, p.9–26, 2020,.

DOI: 10.4028/www.scientific.net/jbbbe.44.9

Google Scholar

[32] H. Khellafi, M. M. Bouziane, A. Djebli, and A. Mankour: Investigation of Mechanical Behaviour of the Bone Cement ( PMMA ) Under Combined Shear and Compression Loading, Journal of Biomimetics, Biomaterials and Biomedical Engineering vol. 41, p.37–48, 2019,.

DOI: 10.4028/www.scientific.net/jbbbe.41.37

Google Scholar

[33] Sun, C, Wang, L, Wang, Z et al: Finite Element Analysis of A Retrieved Custom-Made Knee Prosthesis, Journal of Mechanics in Medicine and Biology, 15 (3). 1550020. pp.1550020-1550034. ISSN 0219-5194, 2015,.

DOI: 10.1142/s0219519415500207

Google Scholar

[34] Y. Akasaki, S. Matsuda, and T. Shimoto: Contact Stress Analysis of the Conforming Post-Cam Mechanism in Posterior-Stabilized Total Knee Arthroplasty, The Journal of Arthroplasty vol. 23, no. 5, p.736–743, 2008,.

DOI: 10.1016/j.arth.2007.05.023

Google Scholar

[35] S. Nakamura, A. Sharma, H. Ito, K. Nakamura, S. M. Zingde, and R. D. Komistek: Kinematic Difference Between Various Geometric Centers and Contact Points for Tri-Condylar Bi-Surface Knee System, J. Arthroplasty, vol. 30, no. 4, p.701–705, 2015,.

DOI: 10.1016/j.arth.2014.11.020

Google Scholar

[36] K. Nakayama, S. Matsuda, H. Miura, H. Higaki, K. Otsuka, and Y. Iwamoto: Contact stress at the post-cam mechanism in posterior-stabilised total knee arthroplasty, J. Bone Jt. Surg. - Ser. B, vol. 87, no. 4, p.483–488, 2005,.

DOI: 10.1302/0301-620x.87b4.15684

Google Scholar

[37] K.J. Lin et al.: Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion, Clin. Biomech., vol. 26, no. 8, p.847–852, 2011,.

DOI: 10.1016/j.clinbiomech.2011.04.002

Google Scholar