[1]
R. N. Villar, V. K. Solomon, and J. Rangam: Knee surgery and the Indian Knee, Trop. Doct., vol. 19, no. 1, p.21–24, 1989,.
DOI: 10.1177/004947558901900107
Google Scholar
[2]
A. Ahlberg, M. Moussa, and M. Al-Nahdi: On Geographical Variations in the Normal Range of Joint Motion, Clin. Orthop. Relat. Res., vol. Number 234, (1988).
DOI: 10.1097/00003086-198809000-00040
Google Scholar
[3]
M.S. Hefzy, B.P. Kelly, and T.D.V. Cooke: Kinematics of the knee joint in deep flexion: A radiographic assessment, Med. Eng. Phys., vol. 20, no. 4, p.302–307, 1998,.
DOI: 10.1016/S1350-4533(98)00024-1
Google Scholar
[4]
G. Li et al.: Knee kinematics with a high-flexion posterior stabilized total knee prosthesis: An in vitro robotic experimental investigation, J. Bone Jt. Surg. - Ser. A, vol. 86, no. 8, p.1721–1729, 2004,.
DOI: 10.2106/00004623-200408000-00017
Google Scholar
[5]
K. Thiele, C. Perka, G. Matziolis, H. O. Mayr, M. Sostheim, and R. Hube: Wear Is Less Common in Revision Surgery, J. BONE Jt. Surg., p.715–720, (2015).
DOI: 10.2106/jbjs.m.01534
Google Scholar
[6]
B.G. Pijls: Polyethylene thickness is a risk factor for wear necessitating insert exchange, Int. Orthop., p.1175–1180, 2012,.
DOI: 10.1007/s00264-011-1412-6
Google Scholar
[7]
P. Massin: How does total knee replacement technique influence polyethylene wear?, Orthop. Traumatol. Surg. Res., 2016,.
Google Scholar
[8]
P. Tzanetis, M.A. Marra, R. Fluit, B. Koopman, and N. Verdonschot: Biomechanical Consequences of Tibial Insert Thickness after Total Knee Arthroplasty : A Musculoskeletal Simulation Study, MDPI, (2021).
DOI: 10.3390/app11052423
Google Scholar
[9]
S. P. Garceau, Y. S. Warschawski, A. Tang, E. B. Sanders, R. M. Schwarzkopf, and D. J. Backstein: The Effect of Polyethylene Liner Thickness on Patient Outcomes and Failure After Primary Total Knee Arthroplasty, J. Arthroplasty, vol. 35, no. 8, p.2072–2075, 2020,.
DOI: 10.1016/j.arth.2020.03.017
Google Scholar
[10]
D. A. Crawford, L. Lapsley, J. M. Hurst, M. J. Morris, A. V. L. Jr, and K. R. Berend: Impact of Polyethylene Thickness on Clinical Outcomes and Survivorship in Medial Mobile-Bearing Unicondylar Knee Arthroplasty, J. Arthroplasty, vol. 36, no. 7, p.2440–2444, 2021,.
DOI: 10.1016/j.arth.2021.02.062
Google Scholar
[11]
M. Lo Presti et al.: Surgery & Research Bearing thickness of unicompartmental knee arthroplasty is a reliable predictor of tibial bone loss during revision to total knee arthroplasty, Orthop. Traumatol. Surg. Res., vol. 106, no. 3, p.429–434, 2020,.
DOI: 10.1016/j.otsr.2019.12.018
Google Scholar
[12]
D. Casey, J. Cottrell, E. Dicarlo, R. Windsor, and T. Wright: PFC Knee Replacement, Clin. Orthop. Relat. Res., no. 464, p.157–163, 2007,.
DOI: 10.1097/blo.0b013e3181591c62
Google Scholar
[13]
E. Reay, J. Wu, J. Holland, and D. Deehan: Premature failure of Kinemax Plus total knee replacements, J. BONE Jt. Surg., p.604–611, 2001,.
DOI: 10.1302/0301-620x.91b5.21525
Google Scholar
[14]
H. D. Clarke, K. R. Math, and G. R. Scuderi: Case Report Polyethylene Post Failure in Posterior Stabilized Total Knee Arthroplasty, J. Arthroplasty, vol. 19, no. 5, p.652–657, 2004,.
DOI: 10.1016/j.arth.2004.02.026
Google Scholar
[15]
D. R. Mauerhan: Case Report Fracture of the Polyethylene Tibial Post in a Posterior Cruciate – Substituting Total Knee Arthroplasty Mimicking Patellar Clunk Syndrome A Report of 5 Cases, J. Arthroplasty, vol. 18, no. 7, p.942–945, 2003,.
DOI: 10.1016/s0883-5403(03)00333-4
Google Scholar
[16]
S. Puloski: Post Wear In Posterior Stabilized TKA : An Unrecognized Source Of Polyethylene Debris, 46th Annu. Meet. Orthop. Res. Soc. March 12-15, 2000, Orlando, Florida, no. 403, p.7709, (2000).
Google Scholar
[17]
N. M. A. Azam, R. Daud, M. A. H, J. Ramli, M. F. B. Hassan, and A. Shah: The Effect of Knee Flexion Angle on Contact Stress of Total Knee Arthroplasty, MATEC Web Conf. 225, vol. 03009, p.2–7, (2018).
DOI: 10.1051/matecconf/201822503009
Google Scholar
[18]
K. Kang, J. Son, S. K. Kwon, and O. Kwon: Finite element analysis for the biomechanical effect of tibial insert materials in total knee arthroplasty, Compos. Struct., 2018,.
DOI: 10.1016/j.compstruct.2018.06.036
Google Scholar
[19]
J. Zhang, Z. Chen, L. Wang, and D. Li: Load application for the contact mechanics analysis and wear prediction of total knee replacement, J Eng. Med., vol. 231, no. 5, p.444–454, 2017,.
DOI: 10.1177/0954411917693880
Google Scholar
[20]
M. Ishikawa, S. Kuriyama, H. Ito, and M. Furu: The Knee Kinematic alignment produces near-normal knee motion but increases contact stress after total knee arthroplasty : A case study on a single implant design, Knee, 2015,.
DOI: 10.1016/j.knee.2015.02.019
Google Scholar
[21]
Y. Tanaka et al.: Clinical Biomechanics How exactly can computer simulation predict the kinematics and contact status after TKA ? Examination in individualized models, JCLB, vol. 39, p.65–70, 2016,.
DOI: 10.1016/j.clinbiomech.2016.09.006
Google Scholar
[22]
Y. Tanaka et al.: Clinical Biomechanics Medial tilting of the joint line in posterior stabilized total knee arthroplasty increases contact force and stress, Clin. Biomech., vol. 53, no. February, p.54–59, 2018,.
DOI: 10.1016/j.clinbiomech.2018.02.008
Google Scholar
[23]
S. Kuriyama, M. Ishikawa, M. Furu, H. Ito, and S. Matsuda: Malrotated Tibial Component Increases Medial Collateral Ligament Tension in Total Knee Arthroplasty, J. Orthop. Res., no. December, p.1658–1666, 2014,.
DOI: 10.1002/jor.22711
Google Scholar
[24]
P. S. Walker et al.: Technical Note, J. Biomechanics vol. 30, no. 1, p.83–89, (1997).
Google Scholar
[25]
S. M. Kurtz, O. K. Muratoglu, M. Evans, and A. A. Edidin: Advances in the processing , sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty, Biomaterials, vol. 20, (1999).
DOI: 10.1016/s0142-9612(99)00053-8
Google Scholar
[26]
N. A. Patil, J. Njuguna, and B. Kandasubramanian: UHMWPE for biomedical applications : Performance and functionalization, Eur. Polym. J., vol. 125, no. January, 2020,.
DOI: 10.1016/j.eurpolymj.2020.109529
Google Scholar
[27]
N. Kumar and A. Kumar: A Review of Use FEM Techniques in Modeling of Human Knee Joint, Journal of Biomimetics, Biomaterials and Biomedical Engineering vol. 28, p.14–25, 2016,.
DOI: 10.4028/www.scientific.net/jbbbe.28.14
Google Scholar
[28]
E. Pen, B. Calvo, M. A. Martı, and M. Doblare: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint, Journal of Biomechanics vol. 39, p.1686–1701, 2006,.
DOI: 10.1016/j.jbiomech.2005.04.030
Google Scholar
[29]
L. Kun, R. Pavel, and R. Kocich: Design , analysis and veri fi cation of a knee joint oncological prosthesis fi nite element model, Computers in Biology and Medicine vol. 54, p.53–60, 2014,.
DOI: 10.1016/j.compbiomed.2014.08.021
Google Scholar
[30]
A. Mestar, S. Zahaf, N. Zina, and A. Boutaous: Development and Validation of a Numerical Model for the Mechanical Behavior of Knee Prosthesis Analyzed by the Finite Elements Method, Journal of Biomimetics, Biomaterials and Biomedical Engineering vol. 37, p.12–42, 2018,.
DOI: 10.4028/www.scientific.net/jbbbe.37.12
Google Scholar
[31]
Akano Theddeus Tochukwu: Numerical Study of Prosthetic Knee Replacement Using Finite Element Analysis, Journal of Biomimetics, Biomaterials and Biomedical Engineering vol. 44, p.9–26, 2020,.
DOI: 10.4028/www.scientific.net/jbbbe.44.9
Google Scholar
[32]
H. Khellafi, M. M. Bouziane, A. Djebli, and A. Mankour: Investigation of Mechanical Behaviour of the Bone Cement ( PMMA ) Under Combined Shear and Compression Loading, Journal of Biomimetics, Biomaterials and Biomedical Engineering vol. 41, p.37–48, 2019,.
DOI: 10.4028/www.scientific.net/jbbbe.41.37
Google Scholar
[33]
Sun, C, Wang, L, Wang, Z et al: Finite Element Analysis of A Retrieved Custom-Made Knee Prosthesis, Journal of Mechanics in Medicine and Biology, 15 (3). 1550020. pp.1550020-1550034. ISSN 0219-5194, 2015,.
DOI: 10.1142/s0219519415500207
Google Scholar
[34]
Y. Akasaki, S. Matsuda, and T. Shimoto: Contact Stress Analysis of the Conforming Post-Cam Mechanism in Posterior-Stabilized Total Knee Arthroplasty, The Journal of Arthroplasty vol. 23, no. 5, p.736–743, 2008,.
DOI: 10.1016/j.arth.2007.05.023
Google Scholar
[35]
S. Nakamura, A. Sharma, H. Ito, K. Nakamura, S. M. Zingde, and R. D. Komistek: Kinematic Difference Between Various Geometric Centers and Contact Points for Tri-Condylar Bi-Surface Knee System, J. Arthroplasty, vol. 30, no. 4, p.701–705, 2015,.
DOI: 10.1016/j.arth.2014.11.020
Google Scholar
[36]
K. Nakayama, S. Matsuda, H. Miura, H. Higaki, K. Otsuka, and Y. Iwamoto: Contact stress at the post-cam mechanism in posterior-stabilised total knee arthroplasty, J. Bone Jt. Surg. - Ser. B, vol. 87, no. 4, p.483–488, 2005,.
DOI: 10.1302/0301-620x.87b4.15684
Google Scholar
[37]
K.J. Lin et al.: Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion, Clin. Biomech., vol. 26, no. 8, p.847–852, 2011,.
DOI: 10.1016/j.clinbiomech.2011.04.002
Google Scholar