[1]
Y. Maeda and S. Ishibashi, Operating instruction method based on EMG for omnidirectional wheelchair robot,, IFSA-SCIS 2017 - Jt. 17th World Congr. Int. Fuzzy Syst. Assoc. 9th Int. Conf. Soft Comput. Intell. Syst., 2017,.
DOI: 10.1109/ifsa-scis.2017.8023339
Google Scholar
[2]
S. R. Dubowsky, S. A. Sisto, and N. A. Langrana, Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: An integrative approach,, J. Biomech. Eng., vol. 131, no. 2, p.1–8, 2009,.
DOI: 10.1115/1.2900726
Google Scholar
[3]
S. F. Ahmed et al., Mobility assistance robot for disabled persons using electromyography(EMG) sensor,, 2018 IEEE Int. Conf. Innov. Res. Dev. ICIRD 2018, no. May, p.1–5, 2018,.
DOI: 10.1109/icird.2018.8376304
Google Scholar
[4]
A. G. Bhakt Dandamudi, D. N. Rao, V. P. Aravilli, and R. Sunitha, Single channel electromyography controlled wheelchair implemented in virtual instrumentation,, Proc. 3rd Int. Conf. Comput. Methodol. Commun. ICCMC 2019, no. Iccmc, p.1040–1045, 2019,.
DOI: 10.1109/iccmc.2019.8819793
Google Scholar
[5]
F. Garavito, J. Gonzalez, J. Cabarcas, D. Chaparro, I. Portocarrero, and A. Vargas, EMG signal analysis based on fractal dimension for muscle activation detection under exercice protocol,, 2016 21st Symp. Signal Process. Images Artif. Vision, STSIVA 2016, 2016,.
DOI: 10.1109/stsiva.2016.7743365
Google Scholar
[6]
W. Tigra et al., A Novel EMG Interface for Individuals with Tetraplegia to Pilot Robot Hand Grasping,, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 2, p.291–298, 2018,.
DOI: 10.1109/tnsre.2016.2609478
Google Scholar
[7]
N. Louis and P. Gorce, Clinical Biomechanics Surface electromyography activity of upper limb muscle during wheelchair propulsion : In fl uence of wheelchair con fi guration,, JCLB, vol. 25, no. 9, p.879–885, 2010,.
DOI: 10.1016/j.clinbiomech.2010.07.002
Google Scholar
[8]
R. Bhardwaj, S. Parameswaran, and V. Balasubramanian, Comparison of Driver Fatigue Trend on simulator and on-road driving based on EMG correlation,, 2018 13th Int. Conf. Ind. Inf. Syst. ICIIS 2018 - Proc., vol. 2, no. 978, p.94–97, 2018,.
DOI: 10.1109/iciinfs.2018.8721431
Google Scholar
[9]
A. D. I. Falih, W. Adhi Dharma, and S. Sumpeno, Classification of EMG signals from forearm muscles as automatic control using Naive Bayes,, 2017 Int. Semin. Intell. Technol. Its Appl. Strength. Link Between Univ. Res. Ind. to Support ASEAN Energy Sect. ISITIA 2017 - Proceeding, vol. 2017-Janua, p.346–351, 2017,.
DOI: 10.1109/isitia.2017.8124107
Google Scholar
[10]
V. P. Maurya, P. Kumar, and S. Halder, Optimisation and Classification of EMG signal using PSO-ANN,, Proc. 3rd Int. Conf. 2019 Devices Integr. Circuit, DevIC 2019, p.191–195, 2019,.
DOI: 10.1109/devic.2019.8783882
Google Scholar
[11]
G. Mezzina, F. Aprigliano, S. Micera, V. Monaco, and D. De Venuto, EEG/EMG based Architecture for the Early Detection of Slip-induced Lack of Balance,, Proc. - 2019 8th Int. Work. Adv. Sensors Interfaces, IWASI 2019, p.9–14, 2019,.
DOI: 10.1109/iwasi.2019.8791252
Google Scholar
[12]
Y. Ning, X. Zhu, S. Zhu, and Y. Zhang, Surface EMG decomposition based on K-means clustering and convolution kernel compensation,, IEEE J. Biomed. Heal. Informatics, vol. 19, no. 2, p.471–477, 2015,.
DOI: 10.1109/jbhi.2014.2328497
Google Scholar
[13]
M. F. Rabbi, N. Wahidah Arshad, K. H. Ghazali, R. Abdul Karim, M. Z. Ibrahim, and T. Sikandar, EMG Activity of Leg Muscles with Knee Pain during Islamic Prayer (Salat),, Proc. - 2019 IEEE 15th Int. Colloq. Signal Process. its Appl. CSPA 2019, no. March, p.213–216, 2019,.
DOI: 10.1109/cspa.2019.8696025
Google Scholar
[14]
S. He, J. Gomez-Tames, and W. Yu, Needle detection by electro-localization for a needle EMG exam robotic simulator,, 2015 IEEE Int. Symp. Med. Meas. Appl. MeMeA 2015 - Proc., p.457–461, 2015,.
DOI: 10.1109/memea.2015.7145247
Google Scholar
[15]
S. Higashi, D. Goto, S. Okada, N. Shiozawa, and M. Makikawa, Development of wearable EMG measurement system on forearm for wrist gestures discrimination,, 2019 IEEE 1st Glob. Conf. Life Sci. Technol. LifeTech 2019, p.250–251, 2019, doi:10.1109/ LifeTech.2019.8884009.
DOI: 10.1109/lifetech.2019.8884009
Google Scholar
[16]
M. Z. Jamal and K. S. Kim, A finely machined toothed silver electrode surface for improved acquisition of EMG signals,, 2018 IEEE Sensors Appl. Symp. SAS 2018 - Proc., vol. 2018-Janua, p.1–5, 2018,.
DOI: 10.1109/sas.2018.8336768
Google Scholar
[17]
M. Z. Jamal, D. H. Lee, and D. J. Hyun, Real Time Adaptive Filter based EMG Signal Processing and Instrumentation Scheme for Robust Signal Acquisition Using Dry EMG Electrodes,, 2019 16th Int. Conf. Ubiquitous Robot. UR 2019, p.683–688, 2019,.
DOI: 10.1109/urai.2019.8768662
Google Scholar
[18]
A. Junlasat, T. Kamolklang, P. Uthansakul, and M. Uthansakul, Finger Movement Detection Based on Multiple EMG Positions,, 2019 11th Int. Conf. Inf. Technol. Electr. Eng. ICITEE 2019, vol. 7, p.8–11, 2019,.
DOI: 10.1109/iciteed.2019.8929980
Google Scholar
[19]
E. Yulianto and T. B. Indrato, The Design of Electrical Wheelchairs with Electromyography Signal Controller for People with Paralysis,, Electr. Electron. Eng., vol. 8, no. 1, p.1–9, 2018,.
Google Scholar
[20]
N. N. Unanyan and A. A. Belov, Signal-based approach to EMG-sensor fault detection in upper limb prosthetics,, Proc. 2019 20th Int. Carpathian Control Conf. ICCC 2019, no. 18, p.1–6, 2019,.
DOI: 10.1109/carpathiancc.2019.8765960
Google Scholar
[21]
G. Borelli, J. Jovic Bonnet, Y. Rosales Hernandez, K. Matsuda, and J. Damerau, Spectral-Distance-Based Detection of EMG Activity from Capacitive Measurements,, IEEE Sens. J., vol. 18, no. 20, p.8502–8509, 2018,.
DOI: 10.1109/jsen.2018.2865580
Google Scholar
[22]
Y. R. Tsai and J. H. Ko, Implementation of a portable multi-channel EMG signal detection system for Android-based smartphones by using USB-OTG interface,, Proc. 4th IEEE Int. Conf. Appl. Syst. Innov. 2018, ICASI 2018, p.766–769, 2018,.
DOI: 10.1109/icasi.2018.8394373
Google Scholar
[23]
F. H. Tyastuti, Y. Aniroh, D. Muslimin, and A. K. R. Effendy, Classification of EMG signal on arm muscle motion using special fourier transformation to control electric wheelchair,, Proceeding - ICAMIMIA 2017 Int. Conf. Adv. Mechatronics, Intell. Manuf. Ind. Autom., p.19–24, 2018,.
DOI: 10.1109/icamimia.2017.8387550
Google Scholar
[24]
R. Hardiansyah, A. Ainurrohmah, Y. Aniroh, and F. H. Tyas, The electric wheelchair control using electromyography sensor of arm muscle,, Proc. 2016 Int. Conf. Inf. Commun. Technol. Syst. ICTS 2016, p.129–134, 2017,.
DOI: 10.1109/icts.2016.7910286
Google Scholar