[1]
P. Papaspyridakos, M. Mokti, C.J. Chen, G. Benic, G. Gallucci, V .Chronopoulos, Implant and prosthodontic survival rates with implant fixed complete dental prostheses in the edentulous mandible after at least 5 years: a systematic review. Clin Implant Dent Relat Res. 16(5) (2014) 705-17.
DOI: 10.1111/cid.12036
Google Scholar
[2]
T. Albrektsson, G.A. Zarb, Current interpretations of the osseointegrated response: clinical significance, International Journal of Prosthodontics. 6 (1993) 95-105.
Google Scholar
[3]
G. Dahl, Subperiostal implants Dent. Abstr. 2 (1957) 46-59.
Google Scholar
[4]
H.J.A. Meijer, F.J.M. Starmans, F. Bosman, W.H.A. Steen, A comparison of finite element models of an edentulous mandible provided with implants. Journal of Oral Rehabilitation. 20 (1993) 147-157.
DOI: 10.1111/j.1365-2842.1993.tb01598.x
Google Scholar
[5]
P.I. Branemark, L.O. Engstrand Ohrnell. a new treatment concept for rehabilitation of the edentulous mandible. Preliminary results from a prospective clinical follow-up study. Clin Implant Dent Relat Res. 6 (2000) 5-22.
DOI: 10.1111/j.1708-8208.1999.tb00086.x
Google Scholar
[6]
P.I. Brånemark, B.O. Hansson, R. Adell, U. Breine, J. Lindström, O. Hallén & A. Ohman. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scandinavian Journal of Plastic and Reconstructive Surgery. 16 (1977) 1-132.
DOI: 10.3109/02844316909036699
Google Scholar
[7]
S. Bernardi, R. Gatto, M. Severino, G. Botticelli, S. Caruso, C. Rastelli, E. Lupi, A.Q. Roias, E. Iacomino, G. Falisi, Short versus longer implants in mandibular alveolar ridge augmented using osteogenic distraction: One-year follow-up of a randomized split-mouth trial, Journal of Oral Implantology. 44 (2018) 184-191.
DOI: 10.1563/aaid-joi-d-16-00216
Google Scholar
[8]
P.H. Wentz Tretto, M.B. Fernandes dos Santos, A. Oro Spazzin, G.K. Rocha Pereira, A. Bacchi, Assessment of stress/strain in dental implants and abutments of alternative materials compared to conventional titanium alloy—3D non-linear finite element analysis, Computer Methods in Biomechanics and Biomedical Engineering. 23 (2020) 372-383.
DOI: 10.1080/10255842.2020.1731481
Google Scholar
[9]
S. Elleuch, H. Jrad, M. Wali, F. Dammak, Mandibular bone remodeling around osseointegrated functionally graded biomaterial implant using three-dimensional finite element model clinical multicenter study, Clinical Implant Dentistry and Related Research. 13 (2023) 311-318.
DOI: 10.1002/cnm.3750
Google Scholar
[10]
A. Bachiri, N. Djebbar, B. Boutabout, B. Serier, Effect of different impactor designs on biomechanical behavior in the interface bone-implant: A comparative biomechanics study. Computer Methods and Programs in Biomedicine. 197 (2020) 105-723.
DOI: 10.1016/j.cmpb.2020.105723
Google Scholar
[11]
S. Park, J. Park, I. Kang, H. Lee, G. Noh. Effects of assessing the bone remodeling process in biomechanical finite element stability evaluations of dental implants. Computer Methods and Programs in Biomedicine. 221 (2022) 106-852.
DOI: 10.1016/j.cmpb.2022.106852
Google Scholar
[12]
M. Pirmoradian, H.A. Naeeni, M. Firouzbakht, D. Toghraie, M.K. Khabaz, R. Darabi, Finite element analysis and experimental evaluation on stress distribution and sensitivity of dental implants to assess optimum length and thread pitch, Computer Methods and Programs in Biomedicine. 187 (2020) 105-258.
DOI: 10.1016/j.cmpb.2019.105258
Google Scholar
[13]
S. Elleuch, H. Jrad, A. Kessentini, M. Wali, F. Dammak, Design optimization of implant geometrical characteristics enhancing primary stability using FEA of stress distribution around dental prosthesis. 24 (2021) 1035-1051.
DOI: 10.1080/10255842.2020.1867112
Google Scholar
[14]
F.A. Velázquez, R.C. Oyagüe, L.G.O. López, D.T. Lagares, Á.J. Martínez-González, A.P. Velasco, C.D. Lynch, J.L. Gutiérrez-Pérez, M.Á. Serrera-Figallo, Influence of bone quality on the mechanical interaction between implant and bone: A finite element analysis, Journal of Dentistry. 88 (2019) 103-161.
DOI: 10.1016/j.jdent.2019.06.008
Google Scholar
[15]
K.P. Nobles, P. Pal, A.V. Janorkar, R.S. Williason, PEEK as a potential material for dental implants and its biomechanical properties and osteoblast cell response, Journal of Dental and Oral Epidemiology. 1 (2021) 1-11.
DOI: 10.54289/jdoe2100106
Google Scholar
[16]
G.A. Paula, G.C. Silva, E.L. Vilaça, T.M. Cornacchia, C.S. Magalhães, A.N. Moreira, Biomechanical behavior of tooth-implant supported prostheses with different implant connections: A nonlinear finite element analysis, Implant Dentistry. 27 (2018) 294-302.
DOI: 10.1097/id.0000000000000737
Google Scholar
[17]
A. Ouldyerou, A. Merdji, L. Aminallah, S. Roy, H. Mehboob, M. Özcan, Biomechanical performance of Ti-PEEK dental implants in bone: An in-silico analysis, Journal of the Mechanical Behavior of Biomedical Materials. 128 (2022) 105-422.
DOI: 10.1016/j.jmbbm.2022.105422
Google Scholar
[18]
M. Youssef Kassem, M. Ahmad Alshimy, M. Sonia El-Shabrawy, Mechanical evaluation of polyetheretherketone compared with zirconia as a dental implant material, Alexandria Dental Journal. 44 (2019) 61-66.
DOI: 10.21608/adjalexu.2019.57364
Google Scholar
[19]
S. Gouasmi, S. Chehri, A. Guessab, Numerical modeling of the mechanical behavior of dental prostheses under the effect of the different types of loads, French Congress of Mechanics, Brest France, August 26-30 (2019).
Google Scholar
[20]
K. Bouzouina, S. Gouasmi, N. Djebbar, Y. Chelahi Chiker, Numerical analysis of the biomechanical behavior for both kinds of dental structures, Journal of Biomimetics, Biomaterials and Biomedical Engineering. 40 (2019) 26-40.
DOI: 10.4028/www.scientific.net/jbbbe.40.26
Google Scholar
[21]
P. Didier, B. Piotrowski, G. Le Coz, J.P. Bravetti, P. Laheurte, Finite Element Analysis of the Stress Field in Peri-Implant Bone: A Parametric Study of Influencing Parameters and Their Interactions for Multi-Objective Optimization, Appl. Sci. 10 (2020) 59-73.
DOI: 10.3390/app10175973
Google Scholar
[22]
P. Corne, P.de March, F. Cleymand, J. Geringer, Fretting-corrosion behavior on dental implant connection in human saliva, J Mech Behav Biomed Mater. 94 (2019) 86-92.
DOI: 10.1016/j.jmbbm.2019.02.025
Google Scholar
[23]
https://www.cgtrader.com/free-3d-print-models/miniatures/figurines/skull model-145aac72-4650-4835-b2ae-0ac09fb70020.
Google Scholar
[24]
https://www.clubic.com/telecharger-fiche210830-meshlab.html.
Google Scholar
[25]
Solidworks Student Edition 2021-2022.
Google Scholar
[26]
ABAQUS (2014), ABAQUS Manual, Version 6.10, Pawtucket, R.I.
Google Scholar
[27]
J. Dahan, J, Troubles d'attitudes mandibulaires, Encycl Méd Chir, Éditions Scientifiques et Médicales Elsevier SAS, Paris, Odontologie, (1990) 23-472.
Google Scholar
[28]
M. Daas, Contribution to the study of the biomechanical behavior of the environment of a dental implant, Doctoral thesis, Paul Verlaine University Metz, January 16 (2008).
Google Scholar
[29]
J.P. Geng, K.B. Tan, G.R. Liu, Application of Finite Element Analysis in Implant Dentistry: A Review of the Literature, J Prosthet Dent. 85 (2001) 585-598.
DOI: 10.1067/mpr.2001.115251
Google Scholar
[30]
JS. Rees, M. Hammadeh, D.C. Jagger, Abfraction Lesion Formation in Maxillary Incisors, Canines and Premolars: A Finite Element Study, European Journal of Oral Sciences. 111 (2003) 149-154.
DOI: 10.1034/j.1600-0722.2003.00018.x
Google Scholar
[31]
G. Papavasiliou, P. Kamposiora, S.C. Bayne, D.A. Felton, Three-Dimensional Finite Element Analysis of Stress Distribution Around Single Tooth Implants as a Function of Bony Support, Prosthesis Type, and Loading During Function, J Prosthet Dent. 76 (1996) 633-640.
DOI: 10.1016/s0022-3913(96)90442-4
Google Scholar
[32]
D. Bozkaya, S. Muftu, A. Muftu. Evaluation of Load Transfer Characteristics of Five Different Implants in Compact Bone at Different Load Levels by Finite Element Analysis, J Prosthet Dent. 92 (2004) 523-530.
DOI: 10.1016/j.prosdent.2004.07.024
Google Scholar
[33]
S. Gouasmi, A. Megueni, H. Benzaama, Numerical Analysis of the Biomechanical Behavior of Dental Implants, 23rd French Congress of Mechanics, Lille, 29 August to September 1 (2017).
Google Scholar
[34]
M.N. Uddin, P.S. Dhanasekaran, R. Asmatulu, Mechanical Properties of Highly Porous PEEK Bionanocomposites Incorporated with Carbon and Hydroxyapatite Nanoparticles for Scaffold Applications.Progress in Biomaterials. 8 (2019) 211-221.
DOI: 10.1007/s40204-019-00123-1
Google Scholar
[35]
P. Sikder, B.T. Challa, S.K. Gummadi, A Comprehensive Analysis on the Processing-Structure Property Relationships of FDM-Based 3D Printed Polyetheretherketone (PEEK) Structures, Materialia. 22 (2022) 101-427.
DOI: 10.1016/j.mtla.2022.101427
Google Scholar
[36]
C. Tibourtine, Interests and Limits of Zirconia in Anterior Fixed Prosthesis, Doctoral thesis, Faculty of Dentistry of Marseille, October 8 (2020).
Google Scholar
[37]
C. Pradines, Y-TZP Zirconia Bridge Infrastructures: From Design to Applications, Doctoral thesis, Henri Poincare University-Nancy I Faculty of Dentistry, (2010).
Google Scholar
[38]
C. Petit, Le Polyétheréthercétone (PEEK): Presentation, Shaping by 3D Printing and Applications in Dental Surgery, Doctoral thesis, University of Nice-Sophia Antipolis Faculty of Dental Surgery, (2021).
Google Scholar
[39]
H. Spiekermann, Color Atlas of Dental Medicine: Implantology, New York: Thieme, (1995).
Google Scholar
[40]
O.A. Abu-Hammad, A. Harrison, D. Williams, The Effect of a Hydroxyapatite-Reinforced Polyethylene Stress Distributor in a Dental Implant on Compressive Stress Levels in Surrounding Bone, Int J Oral Maxillofac Implants. 15 (2000) 559-564.
Google Scholar
[41]
A.L. Sabatini, T. Goswami, Hip Implants VII: Finite Element Analysis and Optimization of Cross-Sections, Mater Des. 29 (2008) 1438-1446.
DOI: 10.1016/j.matdes.2007.09.002
Google Scholar
[42]
I. Akpinar, F. Demire, L. Parnas, S. Sahin, A Comparison of Stress and Strain Distribution Characteristics of Two Different Rigid Implant Designs for Distal-Extension Fixed Prostheses, Quintessence Int. 27 (1996) 11-17.
Google Scholar
[43]
B. Jacquot, PEEK and PEKK are high-performance thermoplastic polymers in dentistry, Inf Dent.2 (2017) 6-10.
Google Scholar