Influence of Mechanical Properties of Dental Implants on Biomechanical Behavior: A Three-Dimensional Finite Element Analysis

Article Preview

Abstract:

In the context of this numerical study is particularly to analyze and observe the effect of mechanical properties and masticatory efforts on the intensity and distribution of biomechanical stresses induced in the mandibular bone (the cortical bone, the spongy bone) and in the elements which constitute the structure of the dental bridge (abutments, implants, bridge). The 3D model studied is subjected to loading in the three directions of space (corrono-apical, disto-medial, bucolingual). The numerical analysis allowed us to highlight the localization of the stress concentration zones, on the one hand, at the level of the regions of contact between the elements of the dental bridge structure and on the other hand, at the level of the mandibular bone. This parametric approach for the mechanical properties of bridges is used to better visualize and quantify the biomechanical behavior of dental bridges.

You might also be interested in these eBooks

Info:

Pages:

39-54

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Papaspyridakos, M. Mokti, C.J. Chen, G. Benic, G. Gallucci, V .Chronopoulos, Implant and prosthodontic survival rates with implant fixed complete dental prostheses in the edentulous mandible after at least 5 years: a systematic review. Clin Implant Dent Relat Res. 16(5) (2014) 705-17.

DOI: 10.1111/cid.12036

Google Scholar

[2] T. Albrektsson, G.A. Zarb, Current interpretations of the osseointegrated response: clinical significance, International Journal of Prosthodontics. 6 (1993) 95-105.

Google Scholar

[3] G. Dahl, Subperiostal implants Dent. Abstr. 2 (1957) 46-59.

Google Scholar

[4] H.J.A. Meijer, F.J.M. Starmans, F. Bosman, W.H.A. Steen, A comparison of finite element models of an edentulous mandible provided with implants. Journal of Oral Rehabilitation. 20 (1993) 147-157.

DOI: 10.1111/j.1365-2842.1993.tb01598.x

Google Scholar

[5] P.I. Branemark, L.O. Engstrand Ohrnell. a new treatment concept for rehabilitation of the edentulous mandible. Preliminary results from a prospective clinical follow-up study. Clin Implant Dent Relat Res. 6 (2000) 5-22.

DOI: 10.1111/j.1708-8208.1999.tb00086.x

Google Scholar

[6] P.I. Brånemark, B.O. Hansson, R. Adell, U. Breine, J. Lindström, O. Hallén & A. Ohman. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scandinavian Journal of Plastic and Reconstructive Surgery. 16 (1977) 1-132.

DOI: 10.3109/02844316909036699

Google Scholar

[7] S. Bernardi, R. Gatto, M. Severino, G. Botticelli, S. Caruso, C. Rastelli, E. Lupi, A.Q. Roias, E. Iacomino, G. Falisi, Short versus longer implants in mandibular alveolar ridge augmented using osteogenic distraction: One-year follow-up of a randomized split-mouth trial, Journal of Oral Implantology. 44 (2018) 184-191.

DOI: 10.1563/aaid-joi-d-16-00216

Google Scholar

[8] P.H. Wentz Tretto, M.B. Fernandes dos Santos, A. Oro Spazzin, G.K. Rocha Pereira, A. Bacchi, Assessment of stress/strain in dental implants and abutments of alternative materials compared to conventional titanium alloy—3D non-linear finite element analysis, Computer Methods in Biomechanics and Biomedical Engineering. 23 (2020) 372-383.

DOI: 10.1080/10255842.2020.1731481

Google Scholar

[9] S. Elleuch, H. Jrad, M. Wali, F. Dammak, Mandibular bone remodeling around osseointegrated functionally graded biomaterial implant using three-dimensional finite element model clinical multicenter study, Clinical Implant Dentistry and Related Research. 13 (2023) 311-318.

DOI: 10.1002/cnm.3750

Google Scholar

[10] A. Bachiri, N. Djebbar, B. Boutabout, B. Serier, Effect of different impactor designs on biomechanical behavior in the interface bone-implant: A comparative biomechanics study. Computer Methods and Programs in Biomedicine. 197 (2020) 105-723.

DOI: 10.1016/j.cmpb.2020.105723

Google Scholar

[11] S. Park, J. Park, I. Kang, H. Lee, G. Noh. Effects of assessing the bone remodeling process in biomechanical finite element stability evaluations of dental implants. Computer Methods and Programs in Biomedicine. 221 (2022) 106-852.

DOI: 10.1016/j.cmpb.2022.106852

Google Scholar

[12] M. Pirmoradian, H.A. Naeeni, M. Firouzbakht, D. Toghraie, M.K. Khabaz, R. Darabi, Finite element analysis and experimental evaluation on stress distribution and sensitivity of dental implants to assess optimum length and thread pitch, Computer Methods and Programs in Biomedicine. 187 (2020) 105-258.

DOI: 10.1016/j.cmpb.2019.105258

Google Scholar

[13] S. Elleuch, H. Jrad, A. Kessentini, M. Wali, F. Dammak, Design optimization of implant geometrical characteristics enhancing primary stability using FEA of stress distribution around dental prosthesis. 24 (2021) 1035-1051.

DOI: 10.1080/10255842.2020.1867112

Google Scholar

[14] F.A. Velázquez, R.C. Oyagüe, L.G.O. López, D.T. Lagares, Á.J. Martínez-González, A.P. Velasco, C.D. Lynch, J.L. Gutiérrez-Pérez, M.Á. Serrera-Figallo, Influence of bone quality on the mechanical interaction between implant and bone: A finite element analysis, Journal of Dentistry. 88 (2019) 103-161.

DOI: 10.1016/j.jdent.2019.06.008

Google Scholar

[15] K.P. Nobles, P. Pal, A.V. Janorkar, R.S. Williason, PEEK as a potential material for dental implants and its biomechanical properties and osteoblast cell response, Journal of Dental and Oral Epidemiology. 1 (2021) 1-11.

DOI: 10.54289/jdoe2100106

Google Scholar

[16] G.A. Paula, G.C. Silva, E.L. Vilaça, T.M. Cornacchia, C.S. Magalhães, A.N. Moreira, Biomechanical behavior of tooth-implant supported prostheses with different implant connections: A nonlinear finite element analysis, Implant Dentistry. 27 (2018) 294-302.

DOI: 10.1097/id.0000000000000737

Google Scholar

[17] A. Ouldyerou, A. Merdji, L. Aminallah, S. Roy, H. Mehboob, M. Özcan, Biomechanical performance of Ti-PEEK dental implants in bone: An in-silico analysis, Journal of the Mechanical Behavior of Biomedical Materials. 128 (2022) 105-422.

DOI: 10.1016/j.jmbbm.2022.105422

Google Scholar

[18] M. Youssef Kassem, M. Ahmad Alshimy, M. Sonia El-Shabrawy, Mechanical evaluation of polyetheretherketone compared with zirconia as a dental implant material, Alexandria Dental Journal. 44 (2019) 61-66.

DOI: 10.21608/adjalexu.2019.57364

Google Scholar

[19] S. Gouasmi, S. Chehri, A. Guessab, Numerical modeling of the mechanical behavior of dental prostheses under the effect of the different types of loads, French Congress of Mechanics, Brest France, August 26-30 (2019).

Google Scholar

[20] K. Bouzouina, S. Gouasmi, N. Djebbar, Y. Chelahi Chiker, Numerical analysis of the biomechanical behavior for both kinds of dental structures, Journal of Biomimetics, Biomaterials and Biomedical Engineering. 40 (2019) 26-40.

DOI: 10.4028/www.scientific.net/jbbbe.40.26

Google Scholar

[21] P. Didier, B. Piotrowski, G. Le Coz, J.P. Bravetti, P. Laheurte, Finite Element Analysis of the Stress Field in Peri-Implant Bone: A Parametric Study of Influencing Parameters and Their Interactions for Multi-Objective Optimization, Appl. Sci. 10 (2020) 59-73.

DOI: 10.3390/app10175973

Google Scholar

[22] P. Corne, P.de March, F. Cleymand, J. Geringer, Fretting-corrosion behavior on dental implant connection in human saliva, J Mech Behav Biomed Mater. 94 (2019) 86-92.

DOI: 10.1016/j.jmbbm.2019.02.025

Google Scholar

[23] https://www.cgtrader.com/free-3d-print-models/miniatures/figurines/skull model-145aac72-4650-4835-b2ae-0ac09fb70020.

Google Scholar

[24] https://www.clubic.com/telecharger-fiche210830-meshlab.html.

Google Scholar

[25] Solidworks Student Edition 2021-2022.

Google Scholar

[26] ABAQUS (2014), ABAQUS Manual, Version 6.10, Pawtucket, R.I.

Google Scholar

[27] J. Dahan, J, Troubles d'attitudes mandibulaires, Encycl Méd Chir, Éditions Scientifiques et Médicales Elsevier SAS, Paris, Odontologie, (1990) 23-472.

Google Scholar

[28] M. Daas, Contribution to the study of the biomechanical behavior of the environment of a dental implant, Doctoral thesis, Paul Verlaine University Metz, January 16 (2008).

Google Scholar

[29] J.P. Geng, K.B. Tan, G.R. Liu, Application of Finite Element Analysis in Implant Dentistry: A Review of the Literature, J Prosthet Dent. 85 (2001) 585-598.

DOI: 10.1067/mpr.2001.115251

Google Scholar

[30] JS. Rees, M. Hammadeh, D.C. Jagger, Abfraction Lesion Formation in Maxillary Incisors, Canines and Premolars: A Finite Element Study, European Journal of Oral Sciences. 111 (2003) 149-154.

DOI: 10.1034/j.1600-0722.2003.00018.x

Google Scholar

[31] G. Papavasiliou, P. Kamposiora, S.C. Bayne, D.A. Felton, Three-Dimensional Finite Element Analysis of Stress Distribution Around Single Tooth Implants as a Function of Bony Support, Prosthesis Type, and Loading During Function, J Prosthet Dent. 76 (1996) 633-640.

DOI: 10.1016/s0022-3913(96)90442-4

Google Scholar

[32] D. Bozkaya, S. Muftu, A. Muftu. Evaluation of Load Transfer Characteristics of Five Different Implants in Compact Bone at Different Load Levels by Finite Element Analysis, J Prosthet Dent. 92 (2004) 523-530.

DOI: 10.1016/j.prosdent.2004.07.024

Google Scholar

[33] S. Gouasmi, A. Megueni, H. Benzaama, Numerical Analysis of the Biomechanical Behavior of Dental Implants, 23rd French Congress of Mechanics, Lille, 29 August to September 1 (2017).

Google Scholar

[34] M.N. Uddin, P.S. Dhanasekaran, R. Asmatulu, Mechanical Properties of Highly Porous PEEK Bionanocomposites Incorporated with Carbon and Hydroxyapatite Nanoparticles for Scaffold Applications.Progress in Biomaterials. 8 (2019) 211-221.

DOI: 10.1007/s40204-019-00123-1

Google Scholar

[35] P. Sikder, B.T. Challa, S.K. Gummadi, A Comprehensive Analysis on the Processing-Structure Property Relationships of FDM-Based 3D Printed Polyetheretherketone (PEEK) Structures, Materialia. 22 (2022) 101-427.

DOI: 10.1016/j.mtla.2022.101427

Google Scholar

[36] C. Tibourtine, Interests and Limits of Zirconia in Anterior Fixed Prosthesis, Doctoral thesis, Faculty of Dentistry of Marseille, October 8 (2020).

Google Scholar

[37] C. Pradines, Y-TZP Zirconia Bridge Infrastructures: From Design to Applications, Doctoral thesis, Henri Poincare University-Nancy I Faculty of Dentistry, (2010).

Google Scholar

[38] C. Petit, Le Polyétheréthercétone (PEEK): Presentation, Shaping by 3D Printing and Applications in Dental Surgery, Doctoral thesis, University of Nice-Sophia Antipolis Faculty of Dental Surgery, (2021).

Google Scholar

[39] H. Spiekermann, Color Atlas of Dental Medicine: Implantology, New York: Thieme, (1995).

Google Scholar

[40] O.A. Abu-Hammad, A. Harrison, D. Williams, The Effect of a Hydroxyapatite-Reinforced Polyethylene Stress Distributor in a Dental Implant on Compressive Stress Levels in Surrounding Bone, Int J Oral Maxillofac Implants. 15 (2000) 559-564.

Google Scholar

[41] A.L. Sabatini, T. Goswami, Hip Implants VII: Finite Element Analysis and Optimization of Cross-Sections, Mater Des. 29 (2008) 1438-1446.

DOI: 10.1016/j.matdes.2007.09.002

Google Scholar

[42] I. Akpinar, F. Demire, L. Parnas, S. Sahin, A Comparison of Stress and Strain Distribution Characteristics of Two Different Rigid Implant Designs for Distal-Extension Fixed Prostheses, Quintessence Int. 27 (1996) 11-17.

Google Scholar

[43] B. Jacquot, PEEK and PEKK are high-performance thermoplastic polymers in dentistry, Inf Dent.2 (2017) 6-10.

Google Scholar