[1]
Matthew L.H. and Steven D.B. Obstructive sleep apnea. In National Library of Medicine: National Center for Biotechnology Information, pp.2-5 (2011).
Google Scholar
[2]
Mannario M.R., Filippo F.D., Pirro M. Obstructive sleep apnea syndrome, Eur. In J. Intern. Med. 23 (7), pp.586-593 (2012).
Google Scholar
[3]
Young T., Evans L., Finn L., Palta M. Estimation of the clinically diagnosed proportion of sleep apnea syndrome. In Middle-aged men and women, Sleep 20 (9), pp.705-706 (1997).
DOI: 10.1093/sleep/20.9.705
Google Scholar
[4]
Ali S.Q., Khalid S., Brahim B. A Novel Technique to Diagnose Sleep Apnea. In Suspected Patients Using Their ECG Data, IEEE Access, 7, p.35184–35194 (2019).
DOI: 10.1109/access.2019.2904601
Google Scholar
[5]
Phat N.H., Trang P.T.T. Detecting Drivers Falling Asleep Algorithm Based on Eye and Head States. 2021 8th NAFOSTED Conference on Information and Computer Science (NICS), pp.84-89 (2021).
DOI: 10.1109/nics54270.2021.9701503
Google Scholar
[6]
Li Y., Pan W., Li K., Jiang Q., Liu G. Sliding trend fuzzy approximate entropy as a novel descriptor of heart rate variability. In obstructive sleep apnea, IEEE J. Biomed. Health. Inf. 23 (1), p.175–183 (2019).
DOI: 10.1109/jbhi.2018.2790968
Google Scholar
[7]
Lavie P., Herer P., Hoffstein V. Obstructive sleep apnea syndrome as a risk factor for hypertension. In Population study, Br. Med. J. 320 (7233), p.479–482 (2000).
DOI: 10.1136/bmj.320.7233.479
Google Scholar
[8]
Peker Y., Kraiczi H., Hedner J., Löth S., Johansson A., Bende M. An independent association between obstructive sleep apnea and coronary artery disease. In Eur. Respir. J. 14 (1), p.179– 184 (1999).
DOI: 10.1034/j.1399-3003.1999.14a30.x
Google Scholar
[9]
Yoshihisa A. and Takeishi Y. Sleep disordered breathing and cardiovascular diseases. In J. Atheroscler. Thromb. 26 (4), p.315–327 (2019).
DOI: 10.5551/jat.rv17032
Google Scholar
[10]
Mark E.D and Kyoung B.I. Obstructive sleep apnea and stroke. In Chest, 136(6), p.1668–1677 (2009).
Google Scholar
[11]
Dung NV., Ngoc PP., Bach NX., Men TT., and Quan NM. Incorporation of Panoramic View in Fall Detection Using Omnidirectional Camera. Intelligent Systems and Networks. ICISN 2021. Lecture Notes in Networks and Systems, vol. 243, pp.313-318, (2021).
DOI: 10.1007/978-981-16-2094-2_39
Google Scholar
[12]
Baek J.W., Kim Y.N., Kim D.E., Lee, J.H. Computer-aided detection with a portable electrocardiographic recorder and acceleration sensors for monitoring obstructive sleep apnea. In Sensors and Transducers, 167(3), p.80–87 (2014).
DOI: 10.4028/www.scientific.net/amm.556-562.2715
Google Scholar
[13]
Rundo J.V. and Downey R. Chapter 25 - Polysomnography. In K. H. Levin, & P. Chauvel (Eds.), Handbook of Clinical Neurology, p.381–392 (2019).
Google Scholar
[14]
Syeda Q.A., Sohail K., Samir B.B. A Novel Technique to Diagnose Sleep Apnea in Suspected Patients Using Their ECG Data. In IEEE Access, 7, p.35184–35194 (2019).
DOI: 10.1109/access.2019.2904601
Google Scholar
[15]
Manish S., Shreyansh Ag., U R.A. Application of an optimal class of antisymmetric wavelet filter banks for obstructive sleep apnea diagnosis using ECG signals. In Computers: Biology and Medicine, p.100:100–113, (2018).
DOI: 10.1016/j.compbiomed.2018.06.011
Google Scholar
[16]
Pombo N., Silva B.M.C., Pinho A.M., Garcia N. Classifier Precision Analysis for Sleep Apnea Detection Using ECG Signals. In IEEE Access, 8, p.200477–200485 (2020).
DOI: 10.1109/access.2020.3036024
Google Scholar
[17]
Inez B. and Wiersema J.R. Resting electroencephalogram in attention deficit hyperactivity disorder. Developmental course and diagnostic value Author links open overlay panel. In Psychiatry Research 216(3), pp.391-397 (2014).
DOI: 10.1016/j.psychres.2013.12.055
Google Scholar
[18]
Simranjit K., Sukhwinder S., Priti A., Damanjeet K., Manoj B. Phase Space Reconstruction of EEG signals for classification of ADHD and control adults. In Clinical EEG and Neuroscience (2020).
Google Scholar
[19]
Pham T.V.H., Nguyen A.T., Tran A.V. Ensemble learning in detecting ADHD children by utilizing the non-linear features of EEG signal. In: N.D. Vo, O.J. Lee, K.H. N. Bui, H. G. Lim, H.J. Jeon, P.M. Nguyen, B.Q. Tuyen, J.T. Kim, J.J. Jung, T.A. Vo (eds.): Proceedings of the 2nd International Conference on Human-centered Artificial Intelligence (Computing4Human 2021) (2021)
Google Scholar
[20]
Duda M., Ma R., Haber N., Wall D.P. Use of machine learning for behavioral distinction of autism and ADHD. In Translational Psychiatry, vol. 6 (2016).
DOI: 10.1038/tp.2015.221
Google Scholar
[21]
Alchalabi A.E., Shirmohammadi S., Eddin A.N., Elsharnouby M. Detecting ADHD patients by an EEG-based serious game. In IEEE Transactions on Instrumentation and Measurement (2018).
DOI: 10.1109/tim.2018.2838158
Google Scholar
[22]
Nguyen D.C. et al. Short time cardio-vascular pulses estimation for dengue fever screening via continuous-wave Doppler radar using empirical mode decomposition and continuous wavelet transform. Biomedical Signal Processing and Control, Vol. 65 (2021) 102361
DOI: 10.1016/j.bspc.2020.102361
Google Scholar
[23]
Wessel J.R. Testing Multiple Psychological Processes for Common Neural Mechanisms Using EEG and Independent Component Analysis. In Brain Topography, vol. 31, pp.90-100 (2016).
DOI: 10.1007/s10548-016-0483-5
Google Scholar
[24]
Katoab K., Takahashia K., Mizuguchiac N., Ushiba J. Online detection of amplitude modulation of motor-related EEG desynchronization using a lock-in amplifier: Comparison with a fast Fourier transform, a continuous wavelet transform, and an autoregressive algorithm. In Journal of Neuroscience Method, vol. 293, pp.289-298 (2018).
DOI: 10.1016/j.jneumeth.2017.10.015
Google Scholar
[25]
Vu TA. et al. Lung sounds classification using wavelet reconstructed sub-bands signal and machine learning. International Conference on Intelligent System & Network (ICISN), vol. 243, pp.215-224 (2021).
DOI: 10.1007/978-981-16-2094-2_27
Google Scholar
[26]
Bozkurt F., Ucar M.K., Bozkurt M.R., Bilgin C. Detection of Abnormal Respiratory Events with Single Channel ECG and Hybrid Machine Learning Model in Patients with Obstructive Sleep Apnea. Irbm, 41(5), p.241–251 (2020).
DOI: 10.1016/j.irbm.2020.05.006
Google Scholar
[27]
Armin A., Alireza K., Mohammad R.M., Ali M.N. Detecting ADHD Childrenusing the Attention Continuity as Nonlinear Feature of EEG. In Frontiers Biomed Technol, pp.28-33 (2016).
Google Scholar
[28]
Mohammad R.M. et al. EEG classification of ADHD and normal children using non-linear features and neural network. In Biomedical Engineering Letters, vol. 6, pp.66-73 (2016).
DOI: 10.1007/s13534-016-0218-2
Google Scholar
[29]
Tran A.V. et al. Classify arrhythmia by using 2D spectral images and deep neural network. Indonesian Journal of Electrical Engineering and Computer Science Vol. 25, No. 2, pp.931-940 (2022)
DOI: 10.11591/ijeecs.v25.i2.pp931-940
Google Scholar
[30]
Erdenebayar U., Kim Y.J., Park J.U., Joo E.Y., Lee, K.J. Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram. In Computer Methods Programs Biomed, p.105001 (2019).
DOI: 10.1016/j.cmpb.2019.105001
Google Scholar
[31]
Nguyen H.D., Wilkins B.A., Cheng Q., Benjamin B.A. An online sleep apnea detection method based on recurrence quantification analysis. In IEEE J Biomed Health Inform, 18(4), p.1285–1293 (2014).
DOI: 10.1109/jbhi.2013.2292928
Google Scholar
[32]
Li K., Pan W., Li Y., Jiang Q., Liu G. A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal. In Neurocomputing, vol. 294, pp.94-101 (2018).
DOI: 10.1016/j.neucom.2018.03.011
Google Scholar
[33]
André P., Nuno P., Bruno M.C.S., Kouamana B., Nuno G. Towards an accurate sleep apnea detection based on ECG signal: The quintessential of a wise feature selection. In Applied Soft Computing, vol. 83, p.105568 (2019).
DOI: 10.1016/j.asoc.2019.105568
Google Scholar
[34]
Tao W., Changhua L., Guohao S., Feng H. Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified lenet-5 convolutional neural network. In PeerJ Hefei University of Technology, Hefei, Anhui, China p.5 (2019).
DOI: 10.7287/peerj.7731v0.1/reviews/1
Google Scholar
[35]
S. Manimurugan et al. Two-Stage Classification Model for the Prediction of Heart Disease Using IoMT and Artificial Intelligence. Sensor, vol. 22 (2) (2022).
Google Scholar
[36]
Authors: Mingchun L., Gary H., Baofeng Z., Atrial Fibrillation Detection Based on the Combination of Depth and Statistical Features of ECG. ICGSP '19: Proceedings of the 3rd International Conference on Graphics and Signal Processing, pp.105-112 (2019).
DOI: 10.1145/3338472.3338485
Google Scholar
[37]
Penzel T., Moody G.B., Mark R.G., Goldberger A.L., Peter J.H. Apnea-ECG Database. In Physionet (2000) https://physionet.org/content/apnea-ecg/1.0.0/.
DOI: 10.1109/cic.2000.898505
Google Scholar
[38]
Hamed B. and Nasser L. An Efficient Teager Energy Operator-Based Automated QRS Complex Detection. Journal of healthcare engineering (2018):8360475.
DOI: 10.1155/2018/8360475
Google Scholar
[39]
Holambe R.S and Deshpande M.S. Nonlinear measurement and modeling using Teager energy operator. In Advances in Non-Linear Modeling for Speech Processing. Springer Briefs in Electrical and Computer Engineering, p.45–59 (2012).
DOI: 10.1007/978-1-4614-1505-3_4
Google Scholar
[40]
Dongqi W., Qinghua M., Dongming C., Hupo Z., Lisheng X. Automatic detection of arrhythmia based on multiresolution representation of ECG signal. In Sensors, p.1579 (2020).
Google Scholar
[41]
Mahsa B. and Mohamad F. Sleep apnea detection from single-lead ECG: a comprehensive analysis of machine learning and deep learning algorithms. IEEE Transactions on Instrumentation and Measurement, p.1–11 (2022).
DOI: 10.1109/tim.2022.3151947
Google Scholar
[42]
Sinam A.S and Swanirbhar M. A novel approach osa detection using single-lead ECG scalogram based on deep neural network. In Journal of Mechanics in Medicine and Biology, p.1950026 (2019).
DOI: 10.1142/s021951941950026x
Google Scholar
[43]
Bahrami M and Forouzanfar M. Detection of sleep apnea from single-lead ECG: Comparison of deep learning algorithms. In IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp.1-5 (2021).
DOI: 10.1109/memea52024.2021.9478745
Google Scholar