[1]
T. Charman and G. Baird, "Practitioner review: Diagnosis of autism spectrum disorder in 2‐and 3‐year‐old children," J. Child Psychol. Psychiatry, 2002, 43 (3), 289–305.
DOI: 10.1111/1469-7610.00022
Google Scholar
[2]
C. Ecker, S. Y. Bookheimer, and D. G. M. Murphy, "Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan," Lancet Neurol., 2015, 14 (11), 1121–1134.
DOI: 10.1016/s1474-4422(15)00050-2
Google Scholar
[3]
M. Wang, D. Xu, L. Zhang, and H. Jiang, "Application of Multimodal MRI in the Early Diagnosis of Autism Spectrum Disorders: A Review," Diagnostics, 2023, 13 (19), 3027.
DOI: 10.3390/diagnostics13193027
Google Scholar
[4]
G. J. Katuwal, S. A. Baum, N. D. Cahill, and A. M. Michael, "Divide and conquer: sub-grouping of ASD improves ASD detection based on brain morphometry," PLoS One, 2016, 11 (4), e0153331.
DOI: 10.1371/journal.pone.0153331
Google Scholar
[5]
J. D. Herrington et al., "Amygdala volume differences in autism spectrum disorder are related to anxiety," J. Autism Dev. Disord., 2017, 47 (12), 3682–3691.
DOI: 10.1007/s10803-017-3206-1
Google Scholar
[6]
C. W. Nordahl et al., "Increased rate of amygdala growth in children aged 2 to 4 years with autism spectrum disorders: a longitudinal study," Arch. Gen. Psychiatry, 2012, 69 (1), 53–61.
DOI: 10.1001/archgenpsychiatry.2011.145
Google Scholar
[7]
B. M. Nacewicz et al., "Amygdala volume and nonverbal social impairment in adolescent and adult males with autism," Arch. Gen. Psychiatry, 2006, 63 (12), 1417–1428.
DOI: 10.1001/archpsyc.63.12.1417
Google Scholar
[8]
G. Li, et al., "Volumetric analysis of amygdala and hippocampal subfields for infants with autism," J Autism Dev Disord, 2023, 53 (6), 2475–2489
DOI: 10.1007/s10803-022-05535-w
Google Scholar
[9]
K. M. Dalton, B. M. Nacewicz, A. L. Alexander, and R. J. Davidson, "Gaze-fixation, brain activation, and amygdala volume in unaffected siblings of individuals with autism," Biol. Psychiatry, 2007, 61 (4), 512–520.
DOI: 10.1016/j.biopsych.2006.05.019
Google Scholar
[10]
D. Radeloff et al., "Structural alterations of the social brain: a comparison between schizophrenia and autism," PLoS One, 2014, 9 (9), e106539.
Google Scholar
[11]
Z. M. Saygin et al., "High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas," Neuroimage, 2017, 155, 370–382.
DOI: 10.1016/j.neuroimage.2017.04.046
Google Scholar
[12]
W. Zhang, W. Groen, M. Mennes, C. Greven, J. Buitelaar, and N. Rommelse, "Revisiting subcortical brain volume correlates of autism in the ABIDE dataset: effects of age and sex," Psychol. Med., 2018, 48 (4), 654–668.
DOI: 10.1017/s003329171700201x
Google Scholar
[13]
J. Munson et al., "Amygdalar volume and behavioral development in autism," Arch. Gen. Psychiatry, 2006, 63 (6), 686–693.
Google Scholar
[14]
D. Van Rooij et al., "Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: results from the ENIGMA ASD Working Group," Am. J. Psychiatry, 2018, 175 (4), 359–369.
DOI: 10.26226/morressier.5785edd1d462b80296c9a207
Google Scholar
[15]
N. Barnea-Goraly et al., "A preliminary longitudinal volumetric MRI study of amygdala and hippocampal volumes in autism," Prog. Neuro-Psychopharmacology Biol. Psychiatry, 2014, 48, 124–128.
DOI: 10.1016/j.pnpbp.2013.09.010
Google Scholar
[16]
C. M. Schumann et al., "The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages," J. Neurosci., 2004, 24 (28), 6392–6401.
DOI: 10.1523/jneurosci.1297-04.2004
Google Scholar
[17]
M. Barad, P.-W. Gean, and B. Lutz, "The role of the amygdala in the extinction of conditioned fear," Biol. Psychiatry, 2006, 60 (4), 322–328.
DOI: 10.1016/j.biopsych.2006.05.029
Google Scholar
[18]
T. Eilam-Stock, T. Wu, A. Spagna, L. J. Egan, and J. Fan, "Neuroanatomical alterations in high-functioning adults with autism spectrum disorder," Front. Neurosci., 2016, 10, 237.
DOI: 10.3389/fnins.2016.00237
Google Scholar
[19]
T. Yarkoni, R. A. Poldrack, T. E. Nichols, D. C. Van Essen, and T. D. Wager, "Large-scale automated synthesis of human functional neuroimaging data," Nat. Methods, 2011, 8 (8), 665–670.
DOI: 10.1038/nmeth.1635
Google Scholar
[20]
A. H. Turner, K. S. Greenspan, and T. G. M. van Erp, "Pallidum and lateral ventricle volume enlargement in autism spectrum disorder," Psychiatry Res. Neuroimaging, 2016, 252, 40–45.
DOI: 10.1016/j.pscychresns.2016.04.003
Google Scholar
[21]
B. F. Sparks et al., "Brain structural abnormalities in young children with autism spectrum disorder," Neurology, 2002, 59 (2), 184–192.
Google Scholar
[22]
V.P. Reinhardt, et al., "Understanding hippocampal development in young children with autism spectrum disorder," J Am Acad Child Adolesc Psychiatry, 2020, 59 (9), 1069–1079.
Google Scholar
[23]
Q. Xu, C. Zuo, S. Liao, Y. Long, and Y. Wang, "Abnormal development pattern of the amygdala and hippocampus from childhood to adulthood with autism," J Clin Neurosci, 2020, 78, 327–332
DOI: 10.1016/j.jocn.2020.03.049
Google Scholar
[24]
H. Y. Lin, H. C. Ni, M. C. Lai, W. Y. I. Tseng, and S. S. F. Gau, "Regional brain volume differences between males with and without autism spectrum disorder are highly age-dependent," Mol. Autism, 2015, 6 (1), 1–18.
DOI: 10.1186/s13229-015-0022-3
Google Scholar
[25]
D. Sussman et al., "The autism puzzle: Diffuse but not pervasive neuroanatomical abnormalities in children with ASD," NeuroImage Clin., 2015, 8, 170–179.
DOI: 10.1016/j.nicl.2015.04.008
Google Scholar
[26]
A. Y. Hardan, R. R. Girgis, J. Adams, A. R. Gilbert, M. S. Keshavan, and N. J. Minshew, "Abnormal brain size effect on the thalamus in autism," Psychiatry Res. - Neuroimaging, 2006, 147 (2–3), 145–151.
DOI: 10.1016/j.pscychresns.2005.12.009
Google Scholar
[27]
S. Haar, S. Berman, M. Behrmann, and I. Dinstein, "Anatomical Abnormalities in Autism?," Cereb. Cortex, 2016, 26 (4), 1440–1452.
DOI: 10.1093/cercor/bhu242
Google Scholar
[28]
N. E. V Foster et al., "Structural gray matter differences during childhood development in autism spectrum disorder: a multimetric approach," Pediatr. Neurol., 2015, 53 (4), 350–359.
DOI: 10.1016/j.pediatrneurol.2015.06.013
Google Scholar
[29]
M. Langen, S. Durston, W. G. Staal, S. J. M. C. Palmen, and H. van Engeland, "Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism," Biol. Psychiatry, 2007, 62 (3), 262–266.
DOI: 10.1016/j.biopsych.2006.09.040
Google Scholar
[30]
C. Ecker et al., "Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach," Neuroimage, 2010, 49 (1), 44–56.
DOI: 10.1016/j.neuroimage.2009.08.024
Google Scholar
[31]
W. Sato et al., "Increased putamen volume in adults with autism spectrum disorder," Front. Hum. Neurosci., 2014, 8, 957.
Google Scholar
[32]
M. C. Postema et al., "Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets," Nat. Commun., 2019, 10 (1), 1–12.
Google Scholar
[33]
X. Luo, Q. Mao, J. Shi, X. Wang, and C.-S. R. Li, "Putamen gray matter volumes in neuropsychiatric and neurodegenerative disorders," World J. psychiatry Ment. Heal. Res., 2019, 3 (1).
Google Scholar
[34]
A. Del Casale, S. Ferracuti, A. Alcibiade, S. Simone, M.N. Modesti, and M. Pompili, "Neuroanatomical correlates of autism spectrum disorders: a meta-analysis of structural magnetic resonance imaging studies," Psychiatry Res Neuroimaging, 2022, 111516
DOI: 10.1016/j.pscychresns.2022.111516
Google Scholar
[35]
K. Riddle, C.J. Cascio, and N.D. Woodward, "Brain structure in autism: a voxel-based morphometry analysis of the Autism Brain Imaging Database Exchange (ABIDE)," Brain Imaging Behav, 2017, 11, 541–551.
DOI: 10.1007/s11682-016-9534-5
Google Scholar
[36]
Z.K. Khadem-Reza, and H. Zare, "Evaluation of brain structure abnormalities in children with autism spectrum disorder (ASD) using structural magnetic resonance imaging," Egypt J Neurol Psychiatr Neurosurg, 2022, 58 (1), 1–14.
DOI: 10.1186/s41983-022-00576-5
Google Scholar
[37]
H. Wang et al. "Developmental brain structural atypicalities in autism: a voxel-based morphometry analysis," Child Adolesc Psychiatry Ment Health, 2022, 16 (1), 1–11.
DOI: 10.1186/s13034-022-00443-4
Google Scholar
[38]
R.J. Jou, N.J. Minshew, N.M. Melhem, M.S. Keshavan, and A.Y. Hardan, "Brainstem volumetric alterations in children with autism," Psychol Med, 2009, 39 (8), 1347–1354.
DOI: 10.1017/s0033291708004376
Google Scholar
[39]
R. Tepest, E. Jacobi, A. Gawronski, B. Krug, W. Möller-Hartmann, F.G. Lehnhardt, and K. Vogeley, "Corpus callosum size in adults with high-functioning autism and the relevance of gender," Psychiatry Res Neuroimaging, 2010, 183 (1), 38–43.
DOI: 10.1016/j.pscychresns.2010.04.007
Google Scholar
[40]
A. Di Martino et al. "The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism," Mol Psychiatry, 2014, 19 (6), 659–667.
Google Scholar
[41]
M. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, and S. M. Smith. FSL. Neuroimage, 2012, 62 (2), 782–790.
DOI: 10.1016/j.neuroimage.2011.09.015
Google Scholar
[42]
S.M. Smith et al. "Advances in functional and structural MR image analysis and implementation as FSL," Neuroimage, 2004; 23, S208–19.
Google Scholar
[43]
K. Kazemi, and N Noori Zadeh. "Quantitative Comparison of SPM, FSL, and Brain suite for Brain MR Image Segmentation." J. of Biomed Physics & Eng, 2014, 4 (1), 13–26.
Google Scholar
[44]
IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.
Google Scholar
[45]
V. Arutiunian et al. "Structural brain abnormalities and their association with language impairment in school-aged children with Autism Spectrum Disorder," Sci Rep, 2023, 13 (1), 1172.
DOI: 10.1038/s41598-023-28463-w
Google Scholar
[46]
M.X. Xu, and X.D. Ju, "Abnormal Brain Structure Is Associated with Social and Communication Deficits in Children with Autism Spectrum Disorder: A Voxel-Based Morphometry Analysis," Brain Sci, 2023, 13 (5), 779
DOI: 10.3390/brainsci13050779
Google Scholar