Fractal Analysis and Biophysical Investigation of Muscular Tissue Damaged due to Low Temperature: A Pilot Study

Article Preview

Abstract:

Severe damage is produced in tissues by freezing and thawing. Until now, a great majority of the studies are performed qualitatively, lacking any quantitative approach. An important step is to choose the best option among different freezing methods. To approach the complex problem of damage produced in tissues by freezing, in this paper we present the classical mechanics approach and a quantitative study making use of a fractal methodology (evaluation of fractal dimension by box-counting method). A comparative fractal analysis between two different steps of freezing the human thoracic diaphragm muscle has been performed to quantify the voids and cracks produced by freezing (samples were placed in a cryostat chamber). Moreover, a standard Euclidean morphometry was performed to determine area and shape of the muscle nuclei after the two steps of freezing. Fractal dimension of the ice-tissue interface structures increased with decreasing temperature (p<0.0001), percentage of cell muscle decreased (p<0.01), while standard morphometry of the nuclei didnt show any modifications. Our results show the ability of the fractal approach to accurately quantify the damage produced by freezing and reveals that the lowest temperature produces the most damage.

You might also be interested in these eBooks

Info:

Pages:

43-51

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Oktay, O. Oktem; Ovarian cryopreservation and transplantation for fertility preservation for medical indications: report of an ongoing experience, Fertil. Steril. (2008), 93 (3), 762-8.

DOI: 10.1016/j.fertnstert.2008.10.006

Google Scholar

[2] H. Sitte, L. Edelmamm, K. Neumann; Cryofixation without pretreatment at ambient pressure, in Cryotechniques in Biological Electron Microscopy (Springer-Verlag, Berlin, 1987).

DOI: 10.1007/978-3-642-72815-0_4

Google Scholar

[3] M. Toner, E. G Cravalho, M. Karel; Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells, J. Appl. Phys. (1989), 67 (3), 1582-93.

DOI: 10.1063/1.345670

Google Scholar

[4] A. N Gent, D. A Tompkins; Surface energy effects for small holes or particles in elastomers, J. Polym. Sci., Part A-2 (1969), 7 (9), 1483-7.

DOI: 10.1002/pol.1969.160070904

Google Scholar

[5] K. Foroutan-pour, P. Dutilleul, D. L Smith; Advances in the implementation of the box-counting method of fractal dimension estimation, Appl. Math. Comput. (1999), 105 (2-3), 195-210.

DOI: 10.1016/s0096-3003(98)10096-6

Google Scholar

[6] G. Bianciardi, M. Buonsanti, A. Pontari, S. Tripodi; Emerging microstructure in biological tissue under thermo-mechanical actions, ICTE2009 Proceedings (IST Press, Lisbona, 2009), 25.

Google Scholar

[7] A. Visintin; Models of Phase Transitions (Birkauser, Boston, 1996).

Google Scholar

[8] S. Li, G. Wang; Introduction to Micromechanics and Nanomechanics (World Scientific, London, 2008).

Google Scholar

[9] M. H Sadd; Elasticity (Elsevier, Amsterdam, 2005).

Google Scholar

[10] B. Hou, Q. S Zheng, Y. Huang; A note on the effect of surface energy and void size to void growth, Eur. J. Mechanics A/Solids (1999), 18 (6), 987-94.

DOI: 10.1016/s0997-7538(99)00133-3

Google Scholar

[11] C. Fond; Cavitation Criterion for Rubber Materials: A Review of Void-Growth Models, J. Polym. Sci. Part B: Polym. Phys. (2001), 39 (17), 2081-96.

DOI: 10.1002/polb.1183

Google Scholar

[12] K. J Falconer; Fractal Geometry: Mathematical Foundations and Applications (John Wiley & Sons Ltd, 2003).

Google Scholar

[13] A. L Goldberger, D. R Rigney, B. J West; Chaos and fractals in human physiology, Sci. Am. (1990), 262 (2), 42-9.

DOI: 10.1038/scientificamerican0290-42

Google Scholar

[14] O. Heymans, J. Fissette, P. Vico, S. Blacher, D. Masset, F. Brouers; Is fractal geometry useful in medicine and biomedical sciences?, Medical Hypothesis (2000), 54 (3), 360-66.

DOI: 10.1054/mehy.1999.0848

Google Scholar

[15] C. Traversi, G. Bianciardi, A. Tasciotti, E. Berni, E. Nuti, P. Luzi, G. M Tosi; Fractal analysis of fluoroangiographic patterns in anterior ischemic optic neuropathy and optic neuritis: a pilot study, Clin. Experiment Ophthalmol. (2008).

DOI: 10.1111/j.1442-9071.2008.01766.x

Google Scholar

[16] G. Bianciardi, C. Miracco, M. M De Santi, P. Luzi; Differential diagnosis between mycosis fungoides and chronic dermatitis by fractal analysis, J. Dermatol. Sci. (2003), 33 (3), 184-6.

DOI: 10.1016/j.jdermsci.2003.07.001

Google Scholar

[17] A. Daxer; Characterization of the neovascularization process in diabetic retinopathy by means of fractal geometry: diagnostic implications, Graefe's Arch. Clin. Exp. Ophthal. (1993), 231 (12), 681-6.

DOI: 10.1007/bf00919281

Google Scholar

[18] G. Latini, G. Bianciardi, S. Parrini, R. N Laurini, C. De Felice; Abnormal oral vascular network pattern geometry: a new clinical sign of Down syndrome, J. Pediatr. (2006), 148 (1), 132-7.

DOI: 10.1016/j.jpeds.2005.08.049

Google Scholar

[19] F. Lefebre, H. Benali, R. Gilles, E. Kahn, R. Di Paola; A fractal approach to the segmentation of microcalcification in digital mammograms, Med. Phys. (1995), 22 (4), 381-90.

DOI: 10.1118/1.597473

Google Scholar

[20] G. A Losa, G. Baumann, F. Nonnenmacher; Fractal dimension of pericellular membranes in human lymphocytes and lymphoblastic leukemia cells, Pathol. Res. Pract. (1992), 188 (4-5), 680-6.

DOI: 10.1016/s0344-0338(11)80080-4

Google Scholar