Cell-Secreted Matrices Enhance Osteogenesis in Adipose-Derived Stem Cells Undergoing Lineage Specification

Article Preview

Abstract:

Osteogenic differentiation of mesenchymal stem cells (MSC) is important in the field of bone tissue engineering. The identification of biological factors that influence osteogenesis is vital for developing a broader understanding of how complex microenvironments play a role in differentiation. The aim of this study was to demonstrate that adipose-derived stem cell (ADSC) osteogenesis is enhanced through interaction with extracellular matrices (ECM) secreted by ADSC undergoing osteogenesis. ADSC were obtained from human patients following elective abdominoplasty. Cells were selected for plastic adherence, characterized, and induced to differentiate using osteogenic supplements (OS; dexamethasone, ascorbic acid, and beta-glycerol phosphate). Cells were removed at several time points during osteogenesis and the secreted ECM was isolated. Undifferentiated cells were re-seeded onto the cell secreted ECMs and induced to differentiate with OS. At several time points, cells cultured on ECMs or tissue culture plastic controls (i.e. uncoated surface) were collected and RNA isolated. QPCR and gene array analysis revealed enrichment of osteogenic markers and more rapid progression through osteogenic maturational phases in cells seeded onto ECM secreted at the midpoint in differentiation (ca. 15 days). Our results demonstrate that the cumulative deposition of ECM reaches a critical point at approximately 15 days, before which there appear to be no definitive osteogenic cues from the matrix, and after which, strong drivers of osteogenesis are present. The creation of microenvironments that contain essential morphogenic matrix signals is an important step towards methods of growing and differentiating MSC in a rapid effective manner, particularly for bone-related clinical applications.

You might also be interested in these eBooks

Info:

Pages:

1-30

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Schipani, H. M Kronenberg. Adult mesenchymal stem cells. In: Adult mesenchymal stem cells. StemBook. Cambridge (MA): Ernestina Schipani and Henry M. Kronenberg, (2008).

DOI: 10.3824/stembook.1.38.1

Google Scholar

[2] M. Locke, V. Feisst, P. R Dunbar. Concise review: human adipose-derived stem cells: separating promise from clinical need. Stem Cells 2011; 29: 404-411.

DOI: 10.1002/stem.593

Google Scholar

[3] A. Augello, C. De Bari. The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther 2010; 21: 1226-1238.

DOI: 10.1089/hum.2010.173

Google Scholar

[4] J. M Gimble, B. A Bunnell, E. S Chiu, F. Guilak. Concise review: Adipose-derived stromal vascular fraction cells and stem cells: let's not get lost in translation. Stem Cells 2011; 29: 749-754.

DOI: 10.1002/stem.629

Google Scholar

[5] A. Hilfiker, C. Kasper, R. Hass, A. Haverich. Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation? Langenbecks Arch Surg 2011; 396: 489-497.

DOI: 10.1007/s00423-011-0762-2

Google Scholar

[6] B. A Bunnell, B. T Estes, F. Guilak, J. M Gimble. Differentiation of adipose stem cells. Methods Mol Biol 2008; 456: 155-171.

DOI: 10.1007/978-1-59745-245-8_12

Google Scholar

[7] B. A Bunnell, M. Flaat, C. Gagliardi, B. Patel, C. Ripoll. Adipose-derived stem cells: isolation, expansion and differentiation. Methods 2008; 45: 115-120.

DOI: 10.1016/j.ymeth.2008.03.006

Google Scholar

[8] C. M Cowan, Y. Y Shi, O. O Aalami, Y. F Chou, C. Mari, R. Thomas, N. Quarto, C. H Contag, B. Wu, M. T Longaker. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 2004; 22: 560-567.

DOI: 10.1038/nbt958

Google Scholar

[9] J. S Gabbay, J. B Heller, S. A Mitchell, P. A Zuk, D. B Spoon, K. L Wasson, R. Jarrahy, P. Benhaim, J. P Bradley. Osteogenic potentiation of human adipose-derived stem cells in a 3-dimensional matrix. Ann Plast Surg 2006; 57: 89-93.

DOI: 10.1097/01.sap.0000205378.89052.d3

Google Scholar

[10] Y. D Halvorsen, D. Franklin, A. L Bond, D. C Hitt, C. Auchter, A. L Boskey, E. P Paschalis, W. O Wilkison, J. M Gimble. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 2001; 7: 729-741.

DOI: 10.1089/107632701753337681

Google Scholar

[11] M. D Kwan, B. J Slater, D. C Wan, M. T Longaker. Cell-based therapies for skeletal regenerative medicine. Hum Mol Genet 2008; 17: R93-8.

DOI: 10.1093/hmg/ddn071

Google Scholar

[12] T. Rada, R. L Reis, M. E Gomes. Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineering. Tissue Eng Part B Rev 2009; 15: 113-125.

DOI: 10.1089/ten.teb.2008.0423

Google Scholar

[13] P. A Zuk, M. Zhu, P. Ashjian, D. A De Ugarte, J. I Huang, H. Mizuno, Z. C Alfonso, J. K Fraser, P. Benhaim, M. H Hedrick. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279-4295.

DOI: 10.1091/mbc.e02-02-0105

Google Scholar

[14] P. A Zuk. The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell 2010; 21: 1783-1787.

DOI: 10.1091/mbc.e09-07-0589

Google Scholar

[15] Y. L Si, Y. L Zhao, H. J Hao, X. B Fu, W. D Han. MSCs: Biological characteristics, clinical applications and their outstanding concerns. Ageing Res Rev 2011; 10: 93-103.

DOI: 10.1016/j.arr.2010.08.005

Google Scholar

[16] R. Xu, A. Boudreau, M. J Bissell. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 2009; 28: 167-176.

DOI: 10.1007/s10555-008-9178-z

Google Scholar

[17] J. Czyz, A. Wobus. Embryonic stem cell differentiation: the role of extracellular factors. Differentiation 2001; 68: 167-174.

DOI: 10.1046/j.1432-0436.2001.680404.x

Google Scholar

[18] S. S Chen, W. Fitzgerald, J. Zimmerberg, H. K Kleinman, L. Margolis. Cell-cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells 2007; 25: 553-561.

DOI: 10.1634/stemcells.2006-0419

Google Scholar

[19] N. Datta, H. L Holtorf, V. I Sikavitsas, J. A Jansen, A. G Mikos. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials 2005; 26: 971-977.

DOI: 10.1016/j.biomaterials.2004.04.001

Google Scholar

[20] N. Datta, Q. P Pham, U. Sharma, V. I Sikavitsas, J. A Jansen, A. G Mikos. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci U S A 2006; 103: 2488-2493.

DOI: 10.1073/pnas.0505661103

Google Scholar

[21] Q. P Pham, F. K Kasper, A. S Mistry, U. Sharma, A. W Yasko, J. A Jansen, A. G Mikos. Analysis of the osteoinductive capacity and angiogenicity of an in vitro generated extracellular matrix. J Biomed Mater Res A 2009; 88: 295-303.

DOI: 10.1002/jbm.a.31875

Google Scholar

[22] M. L Decaris, J. K Leach. Design of experiments approach to engineer cell-secreted matrices for directing osteogenic differentiation. Ann Biomed Eng 2011; 39: 1174-1185.

DOI: 10.1007/s10439-010-0217-x

Google Scholar

[23] H. W Cheng, Y. K Tsui, K. M Cheung, D. Chan, B. P Chan. Decellularization of chondrocyte-encapsulated collagen microspheres: a three-dimensional model to study the effects of acellular matrix on stem cell fate. Tissue Eng Part C Methods 2009; 15: 697-706.

DOI: 10.1089/ten.tec.2008.0635

Google Scholar

[24] T. Hoshiba, N. Kawazoe, T. Tateishi, G. Chen. Development of stepwise osteogenesis-mimicking matrices for the regulation of mesenchymal stem cell functions. J Biol Chem 2009; 284: 31164-31173.

DOI: 10.1074/jbc.m109.054676

Google Scholar

[25] K. J Livak, T. D Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T) Method. Methods 2001; 25: 402-408.

DOI: 10.1006/meth.2001.1262

Google Scholar

[26] R. A Irizarry, B. M Bolstad, F. Collin, L. M Cope, B. Hobbs, T. P Speed. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: e15.

DOI: 10.1093/nar/gng015

Google Scholar

[27] R. A Irizarry, B. Hobbs, F. Collin, Y. D Beazer-Barclay, K. J Antonellis, U. Scherf, T. P Speed. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249-264.

DOI: 10.1093/biostatistics/4.2.249

Google Scholar

[28] E. Sanchez-Sabate, L. Alvarez, E. Gil-Garay, L. Munuera, N. Vilaboa. Identification of differentially expressed genes in trabecular bone from the iliac crest of osteoarthritic patients. Osteoarthritis Cartilage 2009; 17: 1106-1114.

DOI: 10.1016/j.joca.2009.01.010

Google Scholar

[29] M.J. L de Hoon, S. Imoto, J. Nolan, S. Miyano. Open source clustering software. Bioinformatics 2004; 20: 1453-1454.

DOI: 10.1093/bioinformatics/bth078

Google Scholar

[30] A. J Saldanha. Java Treeview-extensible visualization of microarray data. Bioinformatics 2004; 20: 3246-3248.

DOI: 10.1093/bioinformatics/bth349

Google Scholar

[31] J. C Oliveros (2007) VENNY. An interactive tool for comparing lists with Venn Diagrams. Available at http: /bioinfogp. cnb. csic. es/tools/venny/index. html. Accessed (2010).

Google Scholar

[32] D. W Huang, B. T Sherman, R. A Lempicki. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 2009; 4: 44-57.

DOI: 10.1038/nprot.2008.211

Google Scholar

[33] D. W Huang, B. T Sherman, R. A Lempicki. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research 2009; 37: 1-13.

DOI: 10.1093/nar/gkn923

Google Scholar

[34] J. Hubble, J. Demeter, H. Jin, M. Mao, M. Nitzberg, T.B. K Reddy, F. Wymore, Z. K Zachariah, G. Sherlock, C. A Ball. Implementation of GenePattern within the Stanford microarray database. Nucleic Acids Research 2009; 37: D898-D901.

DOI: 10.1093/nar/gkn786

Google Scholar

[35] J. Ernst, Z. Bar-Joseph. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 2006; 7: 191.

DOI: 10.1186/1471-2105-7-191

Google Scholar

[36] J. Ernst, G. J Nau, Z. Bar-Joseph. Clustering short time series gene expression data. Bioinformatics 2005; 21 Suppl 1: i159-68.

DOI: 10.1093/bioinformatics/bti1022

Google Scholar

[37] T. A Owen, M. Aronow, V. Shalhoub, L. M Barone, L. Wilming, M. S Tassinari, M. B Kennedy, S. Pockwinse, J. B Lian, G. S Stein. Progressive Development of the Rat Osteoblast Phenotype Invitro-Reciprocal Relationships in Expression of Genes Associated with Osteoblast Proliferation and Differentiation during Formation of the Bone Extracellular-Matrix. J Cell Physiol 1990; 143: 420-430.

DOI: 10.1002/jcp.1041430304

Google Scholar