A Novel Dynamic 3-Dimensional Construct for Respiratory Tissue Engineering

Article Preview

Abstract:

Tissue engineering of airway tissues poses many complex challenges. As tissue form is determined by function and vice versa, it is necessary to consider mechanical and physiological constraints in conjunction with standard biologic and biochemical factors when culturing tissues in vitro. This study involved the development and validation of a novel 3-dimensional (3-D) construct with the capacity to periodically expose a cell scaffold to air and medium at application of physiologic strain rates. The ultimate objective was to mimic respiratory conditions experienced by airway tissues during breathing whilst ensuring compatibility with proven cell culture techniques. The Biaxx design consists of an elastomeric porous synthetic scaffold integrated with a unique biopolymer coupling unit which engages with an IAXSYS bioreactor actuator. Uniform biaxial strain was imparted by the coupling unit whilst simultaneously creating a periodic air-liquid interface. Biaxx scaffolds with and without a coating of particulate 45S5 bioglass were employed in an assay to assess cell attachment and proliferation whilst subject to periodic strain. Physiologic lung tissue strain of 5-15% was achieved for over 200,000 cycles at 0.2Hz. Preliminary biological studies with H460 human lung carcinoma cells confirmed cell attachment, growth and proliferation on this promising construct.

You might also be interested in these eBooks

Info:

Pages:

31-42

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. R Stripp and S. D Reynolds; Bioengineered Lung Epithelium: Implications for Basic and Applied Studies in Lung Tissue Regeneration. Am. J. Respir. Cell Mol. Biol., 2005. 32 (2), 85-86.

DOI: 10.1165/rcmb.f289

Google Scholar

[2] L. G Griffith and G. Naughton; Tissue Engineering-Current Challenges and Expanding Opportunities. Science, 2002. 295 (5557), 1009-1014.

DOI: 10.1126/science.1069210

Google Scholar

[3] J. M Shannon, R. J Mason and S. D Jennings; Functional differentiation of alveolar type II epithelial cells in vitro: Effects of cell shape, cell-matrix interactions and cell-cell interactions. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1987. 931 (2), 143-156.

DOI: 10.1016/0167-4889(87)90200-x

Google Scholar

[4] J. E Nichols and J. Cortiella; Engineering of a Complex Organ: Progress Toward Development of a Tissue-engineered Lung. Proc Am Thorac Soc, 2008. 5 (6), 723-730.

DOI: 10.1513/pats.200802-022aw

Google Scholar

[5] P. C Robinson, D. R Voelker, R. J Mason; Isolation and culture of human alveolar type II epithelial cells. Characterization of their phospholipid secretion. Am Rev Respir Dis, 1984. 130 (6), 1156-60.

Google Scholar

[6] N. Blow; Cell culture: building a better matrix. Nat Meth, 2009. 6 (8), 619-622.

Google Scholar

[7] C. F Andrade, A. P Wong, T. K Waddell, S. Keshavjee, M. Liu; Cell-based tissue engineering for lung regeneration. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007. 292 (2), L510-L518.

DOI: 10.1152/ajplung.00175.2006

Google Scholar

[8] T. Cao, K. H Ho, S. H Teoh; Scaffold Design and in Vitro Study of Osteochondral Coculture in a Three-Dimensional Porous Polycaprolactone Scaffold Fabricated by Fused Deposition Modeling. Tiss. Eng., 2003. 9 (supplement 1), S103-112.

DOI: 10.1089/10763270360697012

Google Scholar

[9] R. Langer, J. P Vacanti; Tissue Engineering. Science, 1993. 260 (5110), 920-926.

DOI: 10.1126/science.8493529

Google Scholar

[10] T. M O'Shea, and X. G Miao; Bilayered Scaffolds for Osteochondral Tissue Engineering. Tissue Engineering Part B-Reviews, 2008. 14 (4), 447-464.

DOI: 10.1089/ten.teb.2008.0327

Google Scholar

[11] C. Ehrhardt, J. Fiegel, S. Fuchs, R. Abu-Dahab, U. F Schaefer, J. Hanes, C. M Lehr; Drug Absorption by the Respiratory Mucosa: Cell Culture Models and Particulate Drug Carriers. J. Aerosol Med., 2002. 15 (2), 131-139.

DOI: 10.1089/089426802320282257

Google Scholar

[12] A. Steimer, E. Haltner, C. M Lehr; Cell Culture Models of the Respiratory Tract Relevant to Pulmonary Drug Delivery. J. Aerosol Med., 2005. 18 (2), 137-182.

DOI: 10.1089/jam.2005.18.137

Google Scholar

[13] M. Bur, H. Huwer, C. M Lehr, N. Hagen, M. Guldbrandt, K. J Kim, C. Ehrhardt; Assessment of transport rates of proteins and peptides across primary human alveolar epithelial cell monolayers. European Journal of Pharmaceutical Sciences, 2006. 28 (3), 196-203.

DOI: 10.1016/j.ejps.2006.02.002

Google Scholar

[14] B. Rothen-Rutishauser, F. Blank, C. Mühlfeld, P. Gehr; In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opinion on Drug Metabolism & Toxicology, 2008. 4 (8), 1075-1089.

DOI: 10.1517/17425255.4.8.1075

Google Scholar

[15] M. R Grant, K. E Mostov, T. D Tlsty, C. A Hunt; Simulating Properties of In Vitro Epithelial Cell Morphogenesis. PLoS Comput Biol, 2006. 2 (10), e129.

DOI: 10.1371/journal.pcbi.0020129

Google Scholar

[16] P. C Robinson, D. R Voelker, R. J Mason; Isolation and culture of human alveolar type II epithelial cells. Characterization of their phospholipid secretion. Am Rev Respir Dis. 130 (6), 1156-60.

Google Scholar

[17] H. J Rippon, S. Lane, M. Qin, N. S Ismail, M. R Wilson, M. Takata, A. E Bishop; Embryonic Stem Cells as a Source of Pulmonary Epithelium In Vitro and In Vivo. Proc Am Thorac Soc, 2008. 5 (6), 717-722.

DOI: 10.1513/pats.200801-008aw

Google Scholar

[18] J. L Sporty, L. Horálková, C. Ehrhardt; In vitro cell culture models for the assessment of pulmonary drug disposition. Expert Opinion on Drug Metabolism & Toxicology, 2008. 4 (4), 333-345.

DOI: 10.1517/17425255.4.4.333

Google Scholar

[19] K. J Elbert, U. F Schäfers, K. J Kim, V. H Lee, C. M Lehr; Monolayers of Human Alveolar Epithelial Cells in Primary Culture for Pulmonary Absorption and Transport Studies. Pharm Res., 1999. 16 (5), 601-608.

Google Scholar

[20] C. I Grainger, L. L Greenwell, D. J Lockley, G. P Martin, B. Forbes; Culture of Calu-3 Cells at the Air Interface Provides a Representative Model of the Airway Epithelial Barrier. Pharm Res., 2006. 23 (7), 1482-90.

DOI: 10.1007/s11095-006-0255-0

Google Scholar

[21] H. Lin, H. Li, S. Bin, H. J Roth, M. K Lee, J. S Kim, S. J Chung, C. K Shim, D. D Kim; Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J. Pharm. Sci., 2007. 96 (2), 341-350.

DOI: 10.1002/jps.20803

Google Scholar

[22] G. Chan, and D.J. Mooney; New materials for tissue engineering: towards greater control over the biological response. Trends in Biotechnology, 2008. 26 (7), 382-392.

DOI: 10.1016/j.tibtech.2008.03.011

Google Scholar

[23] M. K Lee, J. W Yoo, H. Lin, Y. S Kim, D. D Kim, Y. M Choi, S. K Park, C. H Lee, H. J Roth; Air-Liquid Interface Culture of Serially Passaged Human Nasal Epithelial Cell Monolayer for In Vitro Drug Transport Studies. Drug Delivery, 2005. 12 (5), 305-311.

DOI: 10.1080/10717540500177009

Google Scholar

[24] D. Huh, B. D Matthews. A. Mammoto, M. Montoya-Zavala, H. Y Hsin, D. E Ingber; Reconstituting Organ-Level Lung Functions on a Chip. Science, 2010. 328 (5986), 1662-68.

DOI: 10.1126/science.1188302

Google Scholar

[25] G. J Tortora, S. R Grabowski; Principles of Anatomy and Physiology. 10th edition. 2003, New York: John Wiley & Sons. 806-842.

Google Scholar

[26] T. W Shields; General thoracic surgery, in Chapter 8. Mechanics of Breathing, C.R. O'Donnell, Editor, 2005, Lippincott Williams & Wilkins.

Google Scholar

[27] M. A Matthay, L. Robriquet, X. Fang; Alveolar Epithelium: Role in Lung Fluid Balance and Acute Lung Injury. Proc Am Thorac Soc, 2005. 2 (3), 206-213.

DOI: 10.1513/pats.200501-009ac

Google Scholar

[28] K. G Birukov, J. R Jacobson, A. A Flores, S. Q Ye, A. A Birukova, A. D Verin, J.G. N Garcia; Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003. 285 (4), L785-L797.

DOI: 10.1152/ajplung.00336.2002

Google Scholar

[29] X. Trepat, M. Grabulosa, F. Puig, G. N Maksym, D. Nanajas, R. Farré; Viscoelasticity of human alveolar epithelial cells subjected to stretch. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004. 287 (5), L1025-L1034.

DOI: 10.1152/ajplung.00077.2004

Google Scholar

[30] H. D Prange; Laplace's Law and the Alveolus: A Misconception of Anatomy and a Misapplication of Physics. Adv. Physiol Educ., 2003. 27 (1), 34-40.

DOI: 10.1152/advan.00024.2002

Google Scholar

[31] M. G Levitzky, in Pulmonary Physiology, 6th Edition, 2002. ISSN 1540-77642003, McGraw Hill. p.14.

Google Scholar

[32] G. Mols, H-J. Priebe, and J. Guttmann; Alveolar recruitment in acute lung injury. British Journal of Anaesthesia, 2006. 96 (2), 156-166.

DOI: 10.1093/bja/aei299

Google Scholar

[33] A. R Boccaccini, J. J Blaker; Bioactive composite materials for tissue engineering scaffolds. Expert Rev. Med. Devices, 2005. 2 (3), 303-317.

DOI: 10.1586/17434440.2.3.303

Google Scholar

[34] L. L Hench, J. R Jones; Bioactive Materials for Tissue Engineering Scaffolds, in Future Strategies for Tissue and Organ Replacement by J.M. Polak, L. L Hench, P. Kemp Editor, London, Imperial College Press, 2002, ISBN: 1-8609-4311-X. Pages: 3 - 24.

DOI: 10.1142/9781860949647_0001

Google Scholar

[35] L. L Hench; The story of Bioglass. J. Mater. Sci.: Mater. Med., 2006. 17 (11), 967-78.

Google Scholar

[36] Q. Z Chen, I. D Thompson, A. R Boccaccini; 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, 2006. 27 (11), 2414-2425.

DOI: 10.1016/j.biomaterials.2005.11.025

Google Scholar

[37] I. Ochoa, J. A Sanz-Herrera, J. M Garcia-Aznar, M. Doblaré, D. M Yunos, A. R Boccaccini; Permeability evaluation of 45S5 Bioglass based scaffolds for bone tissue engineering. J. Biomechanics, 2009. 42 (3), 257-260.

DOI: 10.1016/j.jbiomech.2008.10.030

Google Scholar

[38] J. Glowacki, S. Mizuno; Collagen scaffolds for tissue engineering. Biopolymers, 2008. 89 (5), 338-344.

DOI: 10.1002/bip.20871

Google Scholar

[39] P. G Smith, R. Moreno, M. Ikebe; Strain increases airway smooth muscle contractile and cytoskeletal proteins in vitro. Am J. Physiology - Lung Cellular and Molecular Physiology, 1997. 272 (1 pt 1), L20-L27.

DOI: 10.1152/ajplung.1997.272.1.l20

Google Scholar

[40] M. Liu, A. K Tanswell, M. Post; Mechanical force-induced signal transduction in lung cells. Am J. Physiology - Lung Cellular and Molecular Physiology, 1999. 277 (4 pt 1), L667-83.

DOI: 10.1152/ajplung.1999.277.4.l667

Google Scholar

[41] J. Martin, , McGill University Faculty of Medicine Lecture 14. Pulmonary Circulation. Available from http: /alexandria. healthlibrary. ca/documents/notes/bom/unit_2/L-14%20 Pulmonary%20Circuilation. xml. Date accessed: 3/7/(2011).

Google Scholar

[42] F. Van Roy, M. Mareel, Tumour invasion: effects of cell adhesion and motility. Trends Cell Biol., 1992. 2 (6), 163-9.

DOI: 10.1016/0962-8924(92)90035-l

Google Scholar