[1]
B. R Stripp and S. D Reynolds; Bioengineered Lung Epithelium: Implications for Basic and Applied Studies in Lung Tissue Regeneration. Am. J. Respir. Cell Mol. Biol., 2005. 32 (2), 85-86.
DOI: 10.1165/rcmb.f289
Google Scholar
[2]
L. G Griffith and G. Naughton; Tissue Engineering-Current Challenges and Expanding Opportunities. Science, 2002. 295 (5557), 1009-1014.
DOI: 10.1126/science.1069210
Google Scholar
[3]
J. M Shannon, R. J Mason and S. D Jennings; Functional differentiation of alveolar type II epithelial cells in vitro: Effects of cell shape, cell-matrix interactions and cell-cell interactions. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1987. 931 (2), 143-156.
DOI: 10.1016/0167-4889(87)90200-x
Google Scholar
[4]
J. E Nichols and J. Cortiella; Engineering of a Complex Organ: Progress Toward Development of a Tissue-engineered Lung. Proc Am Thorac Soc, 2008. 5 (6), 723-730.
DOI: 10.1513/pats.200802-022aw
Google Scholar
[5]
P. C Robinson, D. R Voelker, R. J Mason; Isolation and culture of human alveolar type II epithelial cells. Characterization of their phospholipid secretion. Am Rev Respir Dis, 1984. 130 (6), 1156-60.
Google Scholar
[6]
N. Blow; Cell culture: building a better matrix. Nat Meth, 2009. 6 (8), 619-622.
Google Scholar
[7]
C. F Andrade, A. P Wong, T. K Waddell, S. Keshavjee, M. Liu; Cell-based tissue engineering for lung regeneration. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007. 292 (2), L510-L518.
DOI: 10.1152/ajplung.00175.2006
Google Scholar
[8]
T. Cao, K. H Ho, S. H Teoh; Scaffold Design and in Vitro Study of Osteochondral Coculture in a Three-Dimensional Porous Polycaprolactone Scaffold Fabricated by Fused Deposition Modeling. Tiss. Eng., 2003. 9 (supplement 1), S103-112.
DOI: 10.1089/10763270360697012
Google Scholar
[9]
R. Langer, J. P Vacanti; Tissue Engineering. Science, 1993. 260 (5110), 920-926.
DOI: 10.1126/science.8493529
Google Scholar
[10]
T. M O'Shea, and X. G Miao; Bilayered Scaffolds for Osteochondral Tissue Engineering. Tissue Engineering Part B-Reviews, 2008. 14 (4), 447-464.
DOI: 10.1089/ten.teb.2008.0327
Google Scholar
[11]
C. Ehrhardt, J. Fiegel, S. Fuchs, R. Abu-Dahab, U. F Schaefer, J. Hanes, C. M Lehr; Drug Absorption by the Respiratory Mucosa: Cell Culture Models and Particulate Drug Carriers. J. Aerosol Med., 2002. 15 (2), 131-139.
DOI: 10.1089/089426802320282257
Google Scholar
[12]
A. Steimer, E. Haltner, C. M Lehr; Cell Culture Models of the Respiratory Tract Relevant to Pulmonary Drug Delivery. J. Aerosol Med., 2005. 18 (2), 137-182.
DOI: 10.1089/jam.2005.18.137
Google Scholar
[13]
M. Bur, H. Huwer, C. M Lehr, N. Hagen, M. Guldbrandt, K. J Kim, C. Ehrhardt; Assessment of transport rates of proteins and peptides across primary human alveolar epithelial cell monolayers. European Journal of Pharmaceutical Sciences, 2006. 28 (3), 196-203.
DOI: 10.1016/j.ejps.2006.02.002
Google Scholar
[14]
B. Rothen-Rutishauser, F. Blank, C. Mühlfeld, P. Gehr; In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opinion on Drug Metabolism & Toxicology, 2008. 4 (8), 1075-1089.
DOI: 10.1517/17425255.4.8.1075
Google Scholar
[15]
M. R Grant, K. E Mostov, T. D Tlsty, C. A Hunt; Simulating Properties of In Vitro Epithelial Cell Morphogenesis. PLoS Comput Biol, 2006. 2 (10), e129.
DOI: 10.1371/journal.pcbi.0020129
Google Scholar
[16]
P. C Robinson, D. R Voelker, R. J Mason; Isolation and culture of human alveolar type II epithelial cells. Characterization of their phospholipid secretion. Am Rev Respir Dis. 130 (6), 1156-60.
Google Scholar
[17]
H. J Rippon, S. Lane, M. Qin, N. S Ismail, M. R Wilson, M. Takata, A. E Bishop; Embryonic Stem Cells as a Source of Pulmonary Epithelium In Vitro and In Vivo. Proc Am Thorac Soc, 2008. 5 (6), 717-722.
DOI: 10.1513/pats.200801-008aw
Google Scholar
[18]
J. L Sporty, L. Horálková, C. Ehrhardt; In vitro cell culture models for the assessment of pulmonary drug disposition. Expert Opinion on Drug Metabolism & Toxicology, 2008. 4 (4), 333-345.
DOI: 10.1517/17425255.4.4.333
Google Scholar
[19]
K. J Elbert, U. F Schäfers, K. J Kim, V. H Lee, C. M Lehr; Monolayers of Human Alveolar Epithelial Cells in Primary Culture for Pulmonary Absorption and Transport Studies. Pharm Res., 1999. 16 (5), 601-608.
Google Scholar
[20]
C. I Grainger, L. L Greenwell, D. J Lockley, G. P Martin, B. Forbes; Culture of Calu-3 Cells at the Air Interface Provides a Representative Model of the Airway Epithelial Barrier. Pharm Res., 2006. 23 (7), 1482-90.
DOI: 10.1007/s11095-006-0255-0
Google Scholar
[21]
H. Lin, H. Li, S. Bin, H. J Roth, M. K Lee, J. S Kim, S. J Chung, C. K Shim, D. D Kim; Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J. Pharm. Sci., 2007. 96 (2), 341-350.
DOI: 10.1002/jps.20803
Google Scholar
[22]
G. Chan, and D.J. Mooney; New materials for tissue engineering: towards greater control over the biological response. Trends in Biotechnology, 2008. 26 (7), 382-392.
DOI: 10.1016/j.tibtech.2008.03.011
Google Scholar
[23]
M. K Lee, J. W Yoo, H. Lin, Y. S Kim, D. D Kim, Y. M Choi, S. K Park, C. H Lee, H. J Roth; Air-Liquid Interface Culture of Serially Passaged Human Nasal Epithelial Cell Monolayer for In Vitro Drug Transport Studies. Drug Delivery, 2005. 12 (5), 305-311.
DOI: 10.1080/10717540500177009
Google Scholar
[24]
D. Huh, B. D Matthews. A. Mammoto, M. Montoya-Zavala, H. Y Hsin, D. E Ingber; Reconstituting Organ-Level Lung Functions on a Chip. Science, 2010. 328 (5986), 1662-68.
DOI: 10.1126/science.1188302
Google Scholar
[25]
G. J Tortora, S. R Grabowski; Principles of Anatomy and Physiology. 10th edition. 2003, New York: John Wiley & Sons. 806-842.
Google Scholar
[26]
T. W Shields; General thoracic surgery, in Chapter 8. Mechanics of Breathing, C.R. O'Donnell, Editor, 2005, Lippincott Williams & Wilkins.
Google Scholar
[27]
M. A Matthay, L. Robriquet, X. Fang; Alveolar Epithelium: Role in Lung Fluid Balance and Acute Lung Injury. Proc Am Thorac Soc, 2005. 2 (3), 206-213.
DOI: 10.1513/pats.200501-009ac
Google Scholar
[28]
K. G Birukov, J. R Jacobson, A. A Flores, S. Q Ye, A. A Birukova, A. D Verin, J.G. N Garcia; Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003. 285 (4), L785-L797.
DOI: 10.1152/ajplung.00336.2002
Google Scholar
[29]
X. Trepat, M. Grabulosa, F. Puig, G. N Maksym, D. Nanajas, R. Farré; Viscoelasticity of human alveolar epithelial cells subjected to stretch. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004. 287 (5), L1025-L1034.
DOI: 10.1152/ajplung.00077.2004
Google Scholar
[30]
H. D Prange; Laplace's Law and the Alveolus: A Misconception of Anatomy and a Misapplication of Physics. Adv. Physiol Educ., 2003. 27 (1), 34-40.
DOI: 10.1152/advan.00024.2002
Google Scholar
[31]
M. G Levitzky, in Pulmonary Physiology, 6th Edition, 2002. ISSN 1540-77642003, McGraw Hill. p.14.
Google Scholar
[32]
G. Mols, H-J. Priebe, and J. Guttmann; Alveolar recruitment in acute lung injury. British Journal of Anaesthesia, 2006. 96 (2), 156-166.
DOI: 10.1093/bja/aei299
Google Scholar
[33]
A. R Boccaccini, J. J Blaker; Bioactive composite materials for tissue engineering scaffolds. Expert Rev. Med. Devices, 2005. 2 (3), 303-317.
DOI: 10.1586/17434440.2.3.303
Google Scholar
[34]
L. L Hench, J. R Jones; Bioactive Materials for Tissue Engineering Scaffolds, in Future Strategies for Tissue and Organ Replacement by J.M. Polak, L. L Hench, P. Kemp Editor, London, Imperial College Press, 2002, ISBN: 1-8609-4311-X. Pages: 3 - 24.
DOI: 10.1142/9781860949647_0001
Google Scholar
[35]
L. L Hench; The story of Bioglass. J. Mater. Sci.: Mater. Med., 2006. 17 (11), 967-78.
Google Scholar
[36]
Q. Z Chen, I. D Thompson, A. R Boccaccini; 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, 2006. 27 (11), 2414-2425.
DOI: 10.1016/j.biomaterials.2005.11.025
Google Scholar
[37]
I. Ochoa, J. A Sanz-Herrera, J. M Garcia-Aznar, M. Doblaré, D. M Yunos, A. R Boccaccini; Permeability evaluation of 45S5 Bioglass based scaffolds for bone tissue engineering. J. Biomechanics, 2009. 42 (3), 257-260.
DOI: 10.1016/j.jbiomech.2008.10.030
Google Scholar
[38]
J. Glowacki, S. Mizuno; Collagen scaffolds for tissue engineering. Biopolymers, 2008. 89 (5), 338-344.
DOI: 10.1002/bip.20871
Google Scholar
[39]
P. G Smith, R. Moreno, M. Ikebe; Strain increases airway smooth muscle contractile and cytoskeletal proteins in vitro. Am J. Physiology - Lung Cellular and Molecular Physiology, 1997. 272 (1 pt 1), L20-L27.
DOI: 10.1152/ajplung.1997.272.1.l20
Google Scholar
[40]
M. Liu, A. K Tanswell, M. Post; Mechanical force-induced signal transduction in lung cells. Am J. Physiology - Lung Cellular and Molecular Physiology, 1999. 277 (4 pt 1), L667-83.
DOI: 10.1152/ajplung.1999.277.4.l667
Google Scholar
[41]
J. Martin, , McGill University Faculty of Medicine Lecture 14. Pulmonary Circulation. Available from http: /alexandria. healthlibrary. ca/documents/notes/bom/unit_2/L-14%20 Pulmonary%20Circuilation. xml. Date accessed: 3/7/(2011).
Google Scholar
[42]
F. Van Roy, M. Mareel, Tumour invasion: effects of cell adhesion and motility. Trends Cell Biol., 1992. 2 (6), 163-9.
DOI: 10.1016/0962-8924(92)90035-l
Google Scholar